YCHEXU MATEMATUYECKUX HAYK

РЕГУЛЯРНОЕ ВЫРОЖДЕНИЕ И ПОГРАНИЧНЫЙ СЛОЙ ДЛЯ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С МАЛЫМ ПАРАМЕТРОМ

М. И. Вишик и Л. А. Люстерник

СОДЕРЖАНИЕ

Введение	3
§ 1. Обыкновенные дифференциальные уравнения с постоянными коэффициен-	
тами. Регулярность вырождения	14
§ 2. Обыкновенные дифференциальные уравнения с переменными коэффициен-	
тами. Основной итерационный процесс	26
§ 3. Аналоги первой краевой задачи для обыкновенных дифференциальных уравнений четного и нечетного порядков. Критерии регулярности вырождения	39
§ 4. Эллиптические уравнения второго порядка с малым параметром при	00
старших производных	53
§ 5. Доказательство теорем 6—9	65
§ 6. Регулярные вырождения и итерационные процессы в случае уравнений	
в частных производных высших порядков	81
§ 7. Регулярное вырождение эллиптических операторов высшего порядка	
в эллиптические	91
§ 8. Взаимные вырождения однохарактеристических и эллиптических уравне-	
ний	99
§ 9. Асимптотическое представление собственных значений и собственных	400
функций вырождающихся операторов	109
липтической частью	116
Некоторые вопросы и задачи	119
Цитированная литература	120
введение	::
высдение	
1. В настоящей статье исследуются краевые задачи в области Q	л-мер-
ного пространства $(n \geqslant 1)$ (которые мы будем называть задачами A_z) — а	
решения линейных дифференциальных уравнений	
решения липенных дифференциальных уравнении $L_z u_z = h$	(0.1)
	, ,
при некоторых условиях В, заданных на границе Г облас	_
коэффициенты оператора $L_{arepsilon}$ зависят от параметра $arepsilon$ так, что при	$\epsilon = 0$

коэффициенты при старших произволных обращаются в нуль, точнее

$$L_{\varepsilon} = L_0 + \varepsilon L_{1\varepsilon}. \tag{0.2}$$

При $\varepsilon=0$ задача A_{ε} превращается в задачу A_{0} : решение предельного уравнения

$$L_0 w_0 = h, \tag{0.3}$$

полученного при $\varepsilon = 0$ из (0.1) (это уравнение более низкого порядка, чем (0.1)) при соответствующих граничных условиях \mathfrak{B}_0 , являющихся частью условий $\mathfrak{B} = \mathfrak{B}_0 + \mathfrak{B}_1$ допредельной задачи A_{ε} . Решение задачи A_0 , вообще говоря, не удовлетворяет условиям \mathfrak{B}_1 (при всех условиях $\mathfrak{B} = \mathfrak{B}_0 + \mathfrak{B}_1$ уравнение (0.3) является переопределенным). Мы ограничимся случаем, когда граничные условия \mathfrak{B}_0 и $\mathfrak{B} = \mathfrak{B}_0 + \mathfrak{B}_1$ означают обращение в нуль решений и их последовательных нормальных производных на границе.

Мы будем говорить, что решение u_0 предельного уравнения имеет невязку в выполнении дополнительных условий задачи $A_{\pmb{\xi}}$

Кроме того, решение u_0 предельного уравнения (0.3) часто бывает менее гладким, чем решения u_{ϵ} уравнения более высокого порядка (0.1).

Обозначим через $\Omega = \Omega$ (L_{ϵ} , \mathfrak{B}) множество функций u (x), определенных в Q и принадлежащих некоторому функциональному пространству, к которым, кроме того, применим оператор L_{ϵ} и которые уловлетворяют в определенном смысле граничным условиям $\mathfrak{B} = \mathfrak{B}_0 + \mathfrak{B}_1$; сам оператор L_{ϵ} , действующий в Ω (т. е. L_{ϵ} в сочетании с условиями \mathfrak{B}), будем обозначать через \overline{L}_{ϵ} . Аналогично определяется оператор \overline{L}_{0} , отвечающий задаче A_{0} . Решение w_{0} этой предельной задачи, как следует из сказанного выше, не принадлежит, как правило, области определения Ω оператора \overline{L}_{ϵ} .

В целом ряде задач решение u_{ϵ} задачи A_{ϵ} при малых $\epsilon>0$ имеет следующее асимптотическое поведение: $u_{\epsilon}-u_0$ заметно отличается от нуля лишь вблизи границы Γ , главная часть этой разности имеет характер так называемого пограничного слоя. Роль такой функции типа погранслоя заключается в том, чтобы компенсировать невязку в выполнении граничных условий \mathfrak{B}_1 задачи A_{ϵ} у решения w_0 предельной задачи A_0 .

Целью настоящей статьи является, во-первых, выделить по возможности широкий класс задач A_{ϵ} с малым параметром, у решений которых возникает явление погранслоя (ниже будет выделен такой класс задач — «задачи с регулярным вырождением»); во-вторых, найти по возможности простой и эффективный метод построения погранслоя (для ряда задач этот метод будет сводиться к решению обыкновенных дифференциальных уравнений с постоянными коэффициентами), дать по возможности более точное асимптотическое представление решения u_{ϵ} задачи A_{ϵ} и для полученных приближенных решений дать оценку остаточных членов и их производных.

2. Уравнения с малым параметром при старших производных возникают во многих задачах физики и механики. Обзор таких залач приведен, например, в статье Фригрихса [1].

Большое число работ в разное время было посвящено обыкновенным линейным уравнениям с малым параметром и системам таких уравнений (см. [2] — [9]) 1). В основном в этих работах исследовались задачи Коши. При этом существенным образом использовалась специфическая особенность обыкновенных уравнений – наличие конечной фундаментальной системы решений. В центре внимания настоящей статьи стоят краевые задачи уравнений в частных производных. Но начинаем мы с одномерного случая, т. е. с краевых задач для обыкновенных уравнений, на примере которых мы излагаем почти всю методику исследования, которую мы далее переносим на *п*-мерный случай.

При такой установке мы при исследовании обыкновенных уравнений оставляем в стороне вопросы, насколько можно улучилть полученные результа ы или упростить доказательства при использовании специфических метолов теории обыкновенных уравнений.

Переходя к работам по линейным уравнениям в частных производных, укажем прежде всего на работы М. А. Леонтовича и В. А. Фока [10], [11], посвященные асимптотике решений разных задач дифракции. А. А. Гольденвейзер в [12] применял асимптотические методы для исследования тонких упругих оболочек. Вазов в [13] изучил асимптотику решения первой краевой задачи для простейшего эллиптического уравнения внутри области.

Левинсон [14] в двумерном случае исследовал асимптотику решения задачи Дирихле для общего эллиптического уравнения второго порядка с малым параметром є, вырождающейся при є = 0 в задачу Коши для уравнения первого порядка с регулярным полем характеристик. Им был для этой цели построен пограничный слой вблизи соответствующей части границы. Предельный переход в этой задаче с любым полем характеристик проведен в работе С. Л. Каменомостской [15].

Интерес авторов к уравнениям в частных производных с малым параметром при старших производных возбудили работы О. А. Олейник [16], [17], [18]. Она рассмотрела вопрос о вырождении 2-й и 3-й краевых задач для эллиптического уравнения 2-го порядка с малым параметром. При $\varepsilon=0$ эти задачи переходят в некоторые новые задачи для уравнений 1-го порядка, которые в цитированных работах О. А. Олейник были исследованы и решены. Дэвис методами Левинсона исследовал вырождение распадающегося эллиптического оператора 4-го порядка в эллиптический оператор 2-го порядка [19].

- И. С. Градштейн [20] и Б. Н. Панайоти [21] исследовали асимптотику решения задачи Коши для некоторых линейных систем уравнений в частных производных с малым параметром при основных членах ²).
- 3. Обычный метод малого параметра заключается в следующем. Дано семейство операторов F_{ε} вида

$$F_{\varepsilon} = F_0 + \varepsilon F_1, \tag{0.4}$$

¹⁾ О нелинейных уравнениях с малым параметром, которым посвящена большая литература, мы здесь говорить не будем.

²⁾ Ряд вопросов нелинейных уравнений в частных производных с малым параметром освещен в статье О. А. Олейник (УМН XII, вып. 3 (1957)).

причем $\Omega(F_0)$ — область определения оператора F_0 — codep жится в $\Omega(F_1)$ — области определения оператора F_1 . Рассматривается решение u_ε уравнения

$$F_{\varepsilon}u_{\varepsilon} = (F_0 + \varepsilon F_1)u_{\varepsilon} = h. \tag{0.5}$$

Расщеплению (0.4) отвечает рекуррентный процесс, который получается, если искать приближенное решение уравнения (0.5) в виде многочлена по є:

$$u_{\varepsilon} = w_0 + \varepsilon w_1 + \ldots + \varepsilon^n w_n + \varepsilon^{n+1} g_n. \tag{0.6}$$

 $(\varepsilon^{n+1}g_n$ — остаточный член). Подставляя (0.6) в (0.5) и собирая члены с одинаковыми степенями ε , получаем для определения w_0 , w_1 , ... рекуррентную систему уравнений:

$$F_0 w_0 = h, \tag{0.7}$$

где w_0 есть решение предельного уравнения, получаем го из (0.5) при $\varepsilon=0$; далее, при $i=1,\,2,\,\ldots,\,n$ имеем

$$F_0 w_i = -F_1 w_{i-1}. ag{0.8}$$

Уравнения (0.8) отличаются лишь правой частью от предельного уравнения (0.7).

Из (0.5), (0.6), (0.7) и (0.8) следует:

$$\begin{split} F_{\varepsilon}\left(\varepsilon^{n+1}g_{n}\right) &= F_{\varepsilon}\left(u_{\varepsilon} - \sum_{i=0}^{n}\varepsilon^{i}w_{i}\right) = h - \left[F_{0}\left(\sum_{i=0}^{n}\varepsilon^{i}w_{i}\right) + \varepsilon F_{1}\left(\sum_{i=0}^{n}\varepsilon^{i}w_{i}\right)\right] = \\ &= (h - F_{0}w_{0}) - \sum_{i=1}^{n}\varepsilon^{i}\left(F_{0}w_{i} + F_{1}w_{i-1}\right) - \varepsilon^{n+1}F_{1}w_{n} = -\varepsilon^{n+1}F_{1}w_{n}, \end{split}$$

откуда

$$F_{\epsilon}g_n = -F_1w_n, \qquad g_n = -F_{\epsilon}^{-1}(F_1w_n). \tag{0.9}$$

Если операторы F_{ε} обратимы, причем равномерно по ε , т. е. $||F_{\varepsilon}^{-1}|| \leq C$, то $||\varepsilon^{n+1}g_n|| = O\left(\varepsilon^{n+1}\right)$. (0.10)

Однако последнее рассуждение в нашем случае, отвечающем уравнениям (0.1), незаконно, так как область определения операторов $\overline{L}_{\varepsilon} = F_{\varepsilon}$ существенно уже области определения оператора $L_0 = F_0$ и, значит, не выполнено использованное выше требование $\Omega\left(F_0\right) \subset \Omega\left(F_1\right)$. Конечно, формально этот процесс можно провести, но тогда операторы F_1 и F_{ε} следует считать совпадающими не с операторами $\overline{L}_{1\varepsilon}$ и $\overline{L}_{\varepsilon}$, а с некоторыми расширениями этих операторов; обозначим последние через $\widetilde{L}_{1\varepsilon}$ и $\widetilde{L}_{\varepsilon}$. Эти операторы совпадают с операторами $L_{1\varepsilon}$ и L_{ε} на функциях, удовлетворяющих только граничным условиям $\mathfrak{B}_{\mathfrak{a}^{\varepsilon}}$ При таком истолковании операторов $F_1 = \widetilde{L}_{1\varepsilon}$ и $F_{\varepsilon} = \widetilde{L}_{\varepsilon}$ мы можем провести все указанные выкладки, если получающиеся функции w_{ε} — достаточно гладкие. Мы придем к формуле (0.9); однако, так как оператор $F_{\varepsilon} = \widetilde{L}_{\varepsilon}$ необратим (он отвечает лишь граничным условиям \mathfrak{B}_0 уравнения более низкого порядка), то из формулы (0.9) не следует малость остаточного члена $\varepsilon^{n+1}g_n$, как показывает следующий простейший пример.

Пусть задача A_{ε} есть решение уравнения

$$L_{\varepsilon}u_{\varepsilon} = \dot{\varepsilon}u'_{\varepsilon} + u_{\varepsilon} = 1$$
 $(L_{0}u \equiv u; L_{1\varepsilon}u \equiv u')$

при условии $\mathfrak{B}: u_{\epsilon}(0) = 0$. Предельная задача A_0 есть решение уравнения $L_0 u_0 \equiv u_0 = 1$ (условия \mathfrak{B}_0 отсутствуют). Очевидно,

$$u_{\varepsilon}=1-e^{-\frac{x}{\varepsilon}}.$$

Если применить указанный итерационный процесс, то получим $w_0=1$,

$$w_1 = \ldots = w_n = 0$$
, и сумма $\sum_{i=0}^n \varepsilon^i w_i = w_0 \equiv 1$. Очевидно,

$$L_{\varepsilon}(\varepsilon^{n+1}g_n) = L_{\varepsilon}(u_{\varepsilon} - \sum_{i=0}^{n} \varepsilon^{i}w_n) = L_{\varepsilon}(u_{\varepsilon} - 1) = 0,$$

в то время, как $\varepsilon^{n+1}g_n=u_\varepsilon-1=-e^{-\frac{x}{\varepsilon}}$, и, следовательно, эту разность, хотя бы вблизи точки границы x=0 нельзя считать малой. (В данном случае оператор $\widetilde{L}_\varepsilon$ есть оператор L_ε , примененный к функциям, на которые не накладывается никаких граничных условий, и этот оператор необратим.)

Разность $u_{\varepsilon} - w_0 = -e^{-\frac{x}{\varepsilon}}$ есть функция типа погранслоя (притом нулевого порядка), компенсирующая невязку в выполнении условия $\mathfrak{B}_1 = \mathfrak{B}$ у функции w_0 . Решая аналогичные задачи с малым параметром, мы увидим, что в ряде случаев существенной частью разности $u_{\varepsilon} - w_0$ являются так называемые функции типа погранслоя k-го порядка ($k \ge 0$), компенсирующие невязки в выполнении условий \mathfrak{B}_1 у решений предельных уравнений. Дадим определение функций типа погранслоя.

Пусть $v_{\varepsilon}(x_1, \ldots, x_n) = v_{\varepsilon}(x)$ — функция, определенная в Q и p раз дифференцируемая. Мы скажем: $v_{\varepsilon}(x)$ есть функция типа погранслоя k-го порядка (k < p), если:

- 1) функция $v_{\epsilon}(x)$ и ее производные до p-го порядка (p>k) включительно сосредоточены вблизи границы Γ области Q, т. е. эти функции равномерно стремятся κ нулю при $\epsilon \to 0$ на любом замкнутом подмножестве Q, не содержащем точек Γ .
- 2) k-е производные функции $v_{\varepsilon}(x)$ ограничены в Q при $\varepsilon \to 0$, в то время как среди (k+1)-ых производных от v_{ε} есть функции, стремящиеся к ∞ в отвечающей задаче норме при $\varepsilon \to 0$; j-е производные от v_{ε} (при j < k) стремятся при $\varepsilon \to 0$ к нулю на \overline{Q} .

Пример 1. На положительной полуоси типичными примерами функций типа погранслоя (вблизи точки x=0) k-го порядка будут функции

$$\varepsilon^k e^{-\frac{\lambda x}{\varepsilon}}, \qquad \varepsilon^k P\left(\frac{x}{\varepsilon}\right) e^{-\frac{\lambda x}{\varepsilon}},$$

где $\lambda > 0$, $P(\xi)$ — многочлен от ξ или, общее, функция, которая вместе со своими p производными растет не быстрее степенной функции при $\xi \to \infty$.

Пример 2. Пусть Q—ограниченная область с гладкой границей, Q_h —часть Q—некоторая полоска вблизи границы Γ , заполненная нормалями (или другими трансверсалями к границе Γ) длины h, $\rho(B)$ —расстояние от точки $B \in Q_h$ до границы Γ по нормали CB (или по трансверсали), $\varphi = (\varphi_1, \ldots, \varphi_{n-1})$ —координаты точки $C \in \Gamma$ выхода нормали CB. Функциями типа погранслоя k-го порядка в Q_h будут, например, функции

$$\epsilon^k \exp\left(\ -\frac{\lambda \left(\varphi \right) \rho}{\epsilon} \ \right), \quad \epsilon^k P\!\left(\ \varphi, \ \frac{\rho}{\epsilon} \ \right) \! \exp\!\left(\ -\frac{\lambda \left(\varphi \right) \rho}{\epsilon} \ \right),$$

где $P(\varphi, \xi)$ — многочлен от ξ с коэффициентами, зависящими от φ или, общее, функция с произволными по ξ , растущими не быстрее какой-то степени ξ . Если помножить такую функцию на множитель $\psi_h(\varphi)$, равный 1 при $\rho \leqslant \frac{h}{3}$, равный 0 при $\rho \geqslant \frac{2h}{3}$ и имеющий ограниченные произволные любого порядка, то получим функцию типа погранслоя во всем Q (если считать ее равной 0 всюду в $Q-Q_h$).

Из приведенного выше анализа следует, что сумма $\sum_{i=0}^n \varepsilon^i w_i$, полученная итерационным процессом, основанным на исходном расщеплении оператора $L_{\varepsilon} = L_0 + \varepsilon L_{1\varepsilon}$, не дает еще асимптотики u_{ε} во всей области $\overline{Q} = Q + \Gamma$. Следует ожидать, и для ряда задач это оказывается справедливым, что w_0, w_1, \ldots, w_n можно дополнить функциями v_0, v_1, \ldots , так, что получается асимптотическое представление

$$u_{\varepsilon} = (w_0 + \varepsilon w_1 + \dots + \varepsilon^n w_n) + (v_0 + \varepsilon v_1 + \dots + \varepsilon^N v_N) + z_n$$
 (0.11)

(где $N \gg n$); при этом сумма $u_{n\varepsilon} = \sum_{i=0}^n \varepsilon^i w_i + \sum_{r=0}^N \varepsilon^r v_r$ удовлетворяет условиям $\mathfrak{B}_0 + \mathfrak{B}_1$, т. е. $u_{n\varepsilon}$, а следовательно, и остаточный член $z_n = u_{\varepsilon} - u_{n\varepsilon}$ принадлежит области определения оператора $\overline{L}_{\varepsilon}$; кроме того, функция $\overline{L}_{\varepsilon} z_n$ должна быть по соответствующей норме величиной порядка ε^{n+1} , и, следовательно, если $\overline{L}_{\varepsilon}^{-1}$ существуют и равномерно ограничены по норме, то $\|z_n\| = O\left(\varepsilon^{n+1}\right)$. Для целого ряда краевых задач, например, для первых краевых задач и разных их обобщений при выполнении некоторых условий, гарантирующих равномерную ограниченность $\|L_{\varepsilon}^{-1}\|$, функции v_i оказываются функциями типа погранслоя.

Суммы $\sum_{i=0}^{n} \varepsilon^{i} \omega_{i}$ мы получили как приближения к некоторому решению

неоднородного уравнения $L_{\varepsilon}u=h$; суммы $\sum_{i=0}^N \varepsilon^i v_i$ сстественно искать как приближения к решению однородного уравнения $L_{\varepsilon}v=0$. Надо найти другое расщепление оператора L_{ε} так, чтобы функции v_i получались бы с помощью второго итерационного процесса, основанного на этом расщеплении. Так как мы ожидаем, что этот итерационный процесс будет давать функции типа погранслоя, то естественно расщепление оператора искать вблизи границы Γ области Q, и лишь затем полученные функции v_i с по-

мощью сглаживающих функций типа ϕ_h (?) распространить на всю область Q. В § 2 это расщепление проведено для случая, когда $L_{\mathfrak{e}}$ есть обыкновенный дифференциальный оператор с переменными коэффициентами порядка k+l, где k – порядок вырожденного оператора $L_{\mathfrak{o}}$:

$$L_0 = \sum_{j=0}^{h} a_j(x) \frac{d^j}{dx^j}$$
, $L_{\varepsilon} = L_0 + \sum_{r=1}^{l} \varepsilon^r a_{k+r}(x) \frac{d^{k+r}}{dx^{k+r}}$,

и граница Γ состоит из точек x=0 и x=1.

Заметим, что для стандартных функций типа погранслоя вида $P\left(\frac{x}{\varepsilon}\right)e^{-\frac{\lambda x}{\varepsilon}}$ каждое дифференцирование по x вносит множитель $\frac{1}{\varepsilon}$. Поэтому главной частью оператора L_{ε} , примененного к таким функциям, будет $\sum_{r=0}^{l} \varepsilon^{r} a_{k+r}(x) \frac{d^{k+r}}{dx^{k+r}} \sqrt{\text{Далее, погранслой, построенный для точки } x=0$, заметно отличен от нуля лишь в малой окрестности этой точки. Поэтому в применении к таким функциям достаточно в качестве главной части оператора L_{ε} взять оператор

т. е. оператор с постоянными коэффициентами и с характеристическим уравнением $Q_0(\lambda) = 0$. Эти наводящие соображения приводят к расщеплению оператора L_{ϵ} , которое проведено в § 2 и имеет вид:

$$L_{\varepsilon}v = \varepsilon^{-k} \left[M_0 v + \varepsilon R_1 v + \ldots + \varepsilon^{N+1} R_{N+1} v \right], \tag{0.12}$$

где $M_0v=\sum_{r=0}^l a_{k+r}\left(0\right) \frac{d^{k+r}}{dt^{k+r}}$, а R_i — достаточно просто устроенные линейные

дифференциальные операторы. Решение v уравнения $L_{\varepsilon}v=0$ в первом приближении заменяется решением v_0 уравнения

$$M_0 v_0 = 0 {(0.13)}$$

с постоянными коэффициентами. Граничные условия для v_0 следует задавать так, чтобы функция w_0+v_0 удовлетворяла условиям \mathfrak{B}_1 в точке x=0. Это дает k_1 граничных условий в точке x=0 для решения v_0 . Каждому корню $-\lambda_i$ с отрицательной вещественной частью уравнения $Q_0(\lambda)=0$ отвечает частное решение $\exp{(-\lambda_i t)}=\exp{\left(-\lambda_i \frac{x}{\varepsilon}\right)}$ уравнения (0.13) типа погранслоя. Если число таких корней равно k_1 , т. е. числу условий \mathfrak{B}_1 в точке x=0, то мы можем так подобрать произвольные постоянные при частных решениях, чтобы их линейная комбинация v_0 удовлетворяла этим k_1 условиям в точке x=0.

Получив таким образом нулевое приближение, мы аналогичным образом с помодью итерационного процесса, основанного на расщеплении (0.12), строим последовательно функции $v_1, v_2, \ldots, v_n, \ldots$ так, что v_i компенси-

рует невязки в выполнении условий \mathfrak{B}_1 у w_i . Такое же построение проводится в точке x=1.

Фактически в § 2 оба итерационных процесса объединяются и несколько модифицируются (добавляются, например, к функциям $w_i + v_i$ еще слагаемые $\epsilon \alpha_i$ так, чтобы $w_i + v_i + \epsilon \alpha_i$ удовлетворяли всем условиям $\mathfrak{B}_0 + \mathfrak{B}_1$). Таким образом, приходим к асимптотике типа (0.11), где $\|z_n\| = O(\epsilon^{n+1})$.

Мы называем вырождение регулярным, если число отрицательных корней соответствующего характеристического уравнения $Q_0(\lambda)=0$ для главной части оператора L_{ϵ} в разложении, отвечающем второму итерационному процессу, совпадает с числом условий \mathfrak{B}_1 в соответствующей точке границы, т. е. с числом условий, выпадающих при переходе к вырожденной задаче. Именно регулярность вырождения обеспечивает возможность вести второй итерационный процесс, а также то, что он приводит к функциям типа погранслоя. Полученная таким образом асимптотика типа (0.11) показывает, что решения u_{ϵ} задачи A_{ϵ} вне любой фиксированной окрестности границы стремятся при $\epsilon \to 0$ к решению w_0 предельной задачи A_0 . Напомним, что, для того чтобы обеспечить представление типа (0.11) для решения u_{ϵ} задачи A_{ϵ} , нам, кроме алгебраического требования регулярности вырождения, нужна еще равномерная ограниченность операторов $\overline{L}_{\epsilon}^{-1}$ и достаточная гладкость решений w_{ϵ} уравнений (0.7), (0.8).

Аналогичные понятия и построения проведены для уравнений в частных производных: в §§ 4-5 для уравнений 2-го порядка, в §§ 6-8 для уравнений высших порядков. Второе расщепление оператора в окрестности границы Г получается, если исходить из таких соображений: для функций типа погранслоя вида $P\left(arphi,rac{
ho}{arepsilon}
ight)e^{-\lambda(arphi)rac{
ho}{arepsilon}},$ где ho-трансверсальная координата, каждое дифференцирование по ρ приводит к появлению множителя $\frac{1}{z}$, в то время как дифференцирование по касательному направлению не меняет порядка погранслоя. Далее, так же как в случае обыкновенного уравнения, каждый коэффициент $a\left(
ho,\; arphi_{i}
ight)$ оператора $L_{arepsilon}$ заменяем его значением $a(0, \varphi_i)$ в точке $(0, \varphi_i)$ границы. Таким образом, в качестве главной части оператора $L_{\mathfrak s}$ появляется в общем случае оператор $M_{\mathfrak o}-$ обыкновенный дифференциальный оператор по $t=rac{
ho}{arepsilon}$, с коэффициентами — функциями ϕ_i . Если характеристическое уравнение для этого оператора (в любой точке (φ_i) границы Г) имеет столько корней с отрицательными вещественными частями, сколько условий \mathfrak{B}_1 теряется в этой точке, то вырождение задачи A_{ε} в задачу A_0 называется регулярным. В этом случае проходит, как и для обыкновенных уравнений, второй итерационный процесс — строятся функции типа погранслоя $v_0, v_1, \ldots,$ которые получаются при помощи решения обыкновенных уравнений с постоянными коэффициентами, и которые компенсируют невязки в выполнении условий \mathfrak{B}_1 для функций $w_0, w_1, \ldots,$ получаемых первым итерационным процессом; в случае существования и равномерной ограниченности операторов $\widehat{L}_{arepsilon}^{-1}$ мы приходим к асимптотике типа (0.11).

В §§ 4-5 подробно исследовано вырождение задачи Дирихле для эллиптического уравнения 2-го порядка $L_{\epsilon}u=h$ в задачу Коши для уравнения 1-го порядка $L_{0}w=h$. Эта задача была впервые подробно рассмотрена в упомянутой работе Левинсона [14], который для построения входящих в асимптотику функций типа погранслоя пользовался нелинейными уравнениями в частных производных 1-го порядка и оценивал остаточные члены в метрике C с помощью принципа максимума.

Если же пользоваться описанной методикой, то погранслой строится с помощью решения обыкновенных уравнений с постоянными коэффициентами и в зависимости от гладкости параметров задачи асимптотика справедлива также и для производных до определенного порядка. Получаются разные виды сходимости решений допредельных задач к решениям предельных задач: оценки остаточных членов получены не только в метрике C, но и в метриках $W_2^{(k)}$. В силу теорем вложения С. Л. Соболева [22] из оценок в среднем в метриках $W_2^{(k)}$ следуют равномерные оценки в соответствующих метриках $C^{(s)}$.

В случае метрик $W_2^{(k)}$ систематически применяются методы, которые в последние годы развивались для исследования краевых задач для эллиптических уравнений, не содержащих параметры, в работах Браудера [23], [24], М. И. Вишика [25], [26], [27], [Гординга [28], [29], Фридрихса [30] и других, связанные с изучением квадратичной формы оператора, с применением энергетических неравенств, трансформации Фурье, и т. д., а также используются априорные оценки типа С. Н. Бернштейна [31], [32] и О. А. Ладыженской [33], [34]. Эти методы в дальнейшем переносятся на уравнения высших порядков. Оценки остаточного члена z_n имеют разный характер в окрестности точек касания характеристик с границей Γ , в пограничной полоске и во внутренней подобласти.

В §§ 6-7 подробно изложены вырождения первой краевой задачи для эллиптических уравнений порядка $2(k_1+l_1)$ в такую же задачу для эллиптических уравнений порядка $2k_1$ (раньше, в § 3, аналогичный вопрос исследуется в одномерном случае). Погранслой всегда в этом случае строится как решение обыкновенных уравнений с постоянными коэффициентами. Достаточным условием равномерной обратимости операторов $\overline{L}_{\varepsilon}$ является равномерная позитивность их квадратичной формы. Доказано, что достаточным условием этой равномерной позитивности является позитивность вырожденного оператора L_{2k_1} и положительность вещественной части некоторой обобщенной характеристической формы оператора L_{ε} (последнее условие носит чисто алгебраический характер). Отметим, что оба эти условия являются достаточными и для регулярности вырождения задачи $A_{\varepsilon}^{\varepsilon}$ в задачу A_{0} .

Эти же связи между позитивностью и регулярностью вырождения можно проследить и для некоторых уравнений нечетного порядка, которые мы назвали однохарактеристическими. Уравнение порядка (2k+1) называется однохарактеристическим в области Q, если через каждую точку Q проходит одна вещественная и k пар комплексных характеристик этого уравнения. Первая краевая задача для однохарактеристического уравнения

порядка 2k+1 в области Q состоит в решении этого уравнения при k условиях на всей границе Γ для нормальных производных до (k-1)-го порядка, и (k-1)-м условии для производной k-го порядка на части границы Γ , соответствующей точкам входа или выхода вещественных характеристик. Простейшим примером такой краевой задачи является задача Коши для уравнений 1-го порядка. Для обыкновенных уравнений аналогом такой задачи является граничная задача для уравнения (2k+1)-го порядка с k+1 условиями в одной точке границы и k-в другой; в \S 3 рассмотрены все четыре созможные случая вырождения друг в друга первых краевых задач для уравнений четного и нечетного порядка и во всех четырех случаях аналогичные приведенным выше условия равномерной позитивности операторов L_{ϵ} являются достаточными условиями регулярности вырождения.

В § 8 аналогичный факт выявляется для уравнений в частных производных. В § 6—8 приведена общая схема построения асимптотики для всех четырех возможных случаев взаимного вырождения эллиптических и однохарактеристических уравнений. Однако поскольку в общем случае дифференциальные свойства решений, а также подробная теория разрешимости недостаточно исследованы, общие предложения об асимптотике носят условный характер. Подробнее проведена асимптотика вырождения эллиптического уравнения порядка 21 в уравнение 1-го порядка, обобщающая рассмотрения §§ 4, 5, и приведены конкретные примеры с асимптотическими разложениями для всех возможных случаев взаимного вырождения эллиптических и однохарактеристических уравнений.

Заметим, что если часть Γ_1 границы Γ является характеристическим многообразием для операторов L_z или L_0 , построение погранслоя усложняется: главная часть оператора L_z в этом случае может превратиться вблизи Γ_1 в оператор в частных производных, и построение погранслоя указанным выше методом сведется к последовательному решению такого уравнения в частных производных. В § 4 показывается, что построение погранслоя сводится вблизи характеристики к решению параболического уравнения (параболический погранслой); в примерах § 8 построение погранслоя вблизи некоторых частей границы приводится к решению своеобразных граничных задач для уравнений в частных производных.

В случае, если решение w_0 вырожденного уравнения недостаточно гладко или даже разрывно (например, решение задачи Коши для уравнения 1-го порядка), возникает вопрос об асимптотике решения u_{ϵ} задачи A_{ϵ} вблизи многообразия разрыва \mathfrak{D} функции w_0 или ее произволных; в этом случае в окрестности \mathfrak{D} может иметь место асимптотика вида (0.11) для u_{ϵ} с функциями v_{ϵ} типа погранслоя (внутренний погранслой), компенсирующими эти разрывы. Простейший пример внутреннего погранслоя приведен в п. 5 § 6. Е. К. Исакова исследовала внутренний погранслой при вырождении параболического уравнения 2-го порядка в гиперболическое уравнение 1-го порядка.

В § 9 исследована асимптотика собственных функций и собственных значений для самосопряженного эллиптического оператора порядка

 $2(k_1+l_1)$ при условиях 1-й краевой задачи, регулярно вырождающегося в такой же оператор порядка $2k_1$. Отметим, что для обыкновенных уравнений первые члены асимптотики, используя функцию Грина, построил В. Б. Гласко [35]. В. Н. Гольдберг [36] для общего класса вырождающихся операторов доказал сходимость в \mathcal{L}_2 их собственных элементов и сходимость собственных значений к собственным элементам и значениям вырожденного оператора. Используя методы предыдущих параграфов и применяя аппарат работы [37], мы даем асимптотику типа (0.11) (с погранслоями) для собственных функций оператора L_{ε} вместе с асимптотикой для собственных значений. Отметим, что В. П. Маслов [38], [39] исследовал ряд вопросов, св занных с асимптотикой собственных функций для дифференциальных операторов при переходе от дискретного к непрерывному спектру.

В § 10 рассмотрен случай параболического уравнения $\frac{\partial u}{\partial t} = L_\epsilon u$, у которого пространственный оператор L_ϵ , $\epsilon = \epsilon$ (t) вырождается при $t \to \infty$ в оператор более низкого порягка. Сочетание методов предыдущих параграфов с методами заметок авторов [40] и [41] приволит к асимптотике решений смешанной задачи для такого параболического уравнения при больших t. Отметим, что изложенная методика построения погранслоя и асимптотических разложений применима и к другим задачам. В случае других краевых задач для эллиптических уравнений такое исследование проведено Н. М. Леонтович. Такие же явления погранслоя возникают, если предельное уравнение $L_6 w = h$ (при $\epsilon = 0$) будет того же порядка, что и допредельное, но теряст часть граничных условий, например, если задача Коши для гиперболического уравнения

$$L_{\varepsilon}u \equiv \varepsilon^{2} \frac{\partial^{2}u}{\partial t^{2}} + \frac{\partial u}{\partial t} - \frac{\partial^{2}u}{\partial x^{2}} = h,$$

$$u \Big|_{t=0} = 0, \quad \frac{\partial u}{\partial t} \Big|_{t=0} = 0$$

вырождается в задачу Коши для параболического уравнения

$$L_{\mathbf{0}} w_{\mathbf{0}} \equiv \frac{\partial w_{\mathbf{0}}}{\partial t} - \frac{\delta^2 w_{\mathbf{0}}}{\partial x^2} = h, \quad w_{\mathbf{0}} \mid_{t=0} = 0$$

с потерей граничного условия $\frac{\partial u}{\partial t}\Big|_{t=0}=0$. Этот вопрос (для смешанной задачи) был исследован Никольским в его дипломной работе.

Как в свое время указал С. Л. Соболев [22], для эллиптических уравнений порядка 2m граничные условия первой краевой задачи следует задавать по-разному на компонентах границы разного числа измерений. При вырождении такого уравнения в уравнение более низкого порядка некоторые граничные условия на многообразиях меньшего числа измерений могут пропадать и в их окрестности наблюдаются сеоеобразные явления внутреннего погранслоя. Исследование этого вопроса проведено Р. М. Гутерман.

Такие же явления могут возникать и при предельном переходе от разностных уравнений к дифференциальным. Например, если для квадрата Q на плоскости (x, y) рассматривается разностный аналог $\Delta_h u_h = 0$ уравнения Лапласа (с шагом h) при граничных условиях $u_h = 0$ на границе Γ квадрата Q и значении $u_h = 1$ в центре Q квадрата. Для предельного уравнения Лапласа $\Delta w_0 = 0$ при граничном условии $w_0 = 0$ на Γ решение $w_0 \equiv 0$ теряет условие в точке 0, вокруг которой u_h имеет характер внутреннего погранслоя. В конце статьи приводятся некоторые, связанные с ее содержанием задачи. Некоторые результаты, содержащиеся в статье, опубликованы в заметках авторов [42], [43].

Мы пользуемся в работе обозначениями:

$$(u, v) = \int_{\mathcal{O}} u \cdot v \, dx, \quad ||u|| = (u, u)^{\frac{1}{2}},$$

 $W_2^{(k)}\left(Q\right)$ —гильбертово пространство, состоящее из функций $u\left(x_1,\ldots,x_n\right)$, принадлежащих \mathcal{L}_2 вместе со всеми своими производными до порядка k, с нормой

$$\|u\|_{W_{2}^{(k)}}^{2}=igcup_{Q}\sum_{s=0}^{k}\sum_{i}\left|rac{\partial^{s}u}{\partial x_{i_{1}}\dots\partial s_{i_{s}}}
ight|^{2}dx.$$

 $||\cdot||_r$ — норма в некотором банаховом пространстве.

§ 1. Обыкновенные дифференциальные уравнения с постоянными коэффициентами. Регулярность вырождения

1. Рассмотрим сначала многократно изучавшийся процесс вырождения задачи $A_{\mathfrak s}$, задачи Коши для уравнения (k+l)-го порядка, в задачу $A_{\mathfrak o}$, задачу Коши для уравнения k-го порядка. Итак, ищем решение уравнения

$$L_0 y \equiv \sum_{i=0}^h a_i \frac{d^i y}{dx^i} = 0, \quad a_h \neq 0$$
 (1.1)

при начальных значениях

$$\frac{d^{i}y}{dx^{i}}\Big|_{x=0} = D_{i} \quad (i=0, 1, ..., k-1)$$
(1.2)

(задача A_0). Коэффициенты a_j — пока постоянные.

Уравнению (1.1) отвечает характеристическое уравнение

$$P_0(\lambda) \equiv \sum_{j=0}^k a_j \lambda^j = 0. \tag{1.3}$$

Для упрощения изложения мы без оговорок будем предполагать на протяжении этой работы, что характеристические уравнения (1.3), а также ниже определенные дополнительные характеристические уравнения не имеют кратных корней. Случай кратных корней, не представляя принципиальных затруднений, связан с более громоздкими выкладками. Итак, пусть корни $\mu_1, \mu_2, \ldots, \mu_k$ уравнения (1.3) попарно различны.

Общее решение уравнения (1.1) имеет вид:

$$y(x) = \sum_{j=1}^{k} c_{j} e^{\mu_{j} x}$$
 (1.4)

и поэтому

$$y^{(i)}(x) = \sum_{j=1}^{k} c_j (\mu_j)^i e^{\mu_j x}.$$
 (1.5)

Условия (1.2) запишутся так:

$$\sum_{i=1}^{k} c_j (\mu_j)^i = D_i \quad (i = 0, 1, ..., k-1).$$
 (1.6)

Это система линейных уравнений относительно c_j с определителем — определителем Вандермонда $W(\mu_1, \ldots, \mu_k)$. Так как в силу сделанного предположения числа μ_i попарно различны, то

$$W(\mu_1, \ldots, \mu_k) \neq 0. \tag{1.7}$$

Решение задачи A_0 обозначим через $y_0(x)$.

Задача A_{ε} заключается в решении уравнения (k+l)-го порядка

$$L_{\varepsilon}u \equiv L_{0}u + \sum_{r=1}^{l} \varepsilon^{r} a_{k+r} \frac{d^{k+r}u}{dx^{k+r}} = 0^{1}, \qquad (1.8)$$

где $\varepsilon > 0$, при граничных условиях

$$\frac{d^{s}u}{dx^{s}}\Big|_{x=0} = D_{s} \quad (s=0, 1, \dots, k+l-1)$$
(1.9)

(т. е., кроме условий (1.2), берется еще l дополнительных условий).

Назовем •дополнительным характеристическим уравнением для (1.8) уравнение

$$Q_0(\lambda) \equiv \sum_{r=0}^{l} a_{k+r} \lambda^r = 0. \tag{1.10}$$

Пусть корнями этого уравнения будут числа v_i ($i = 1, \ldots, l$).

Рассмотрим характеристическое уравнение, отвечающее уравнению (1.8):

$$P_{\varepsilon}(\lambda) \equiv \sum_{j=0}^{k} a_{j} \lambda^{j} + \sum_{r=1}^{e} \varepsilon^{r} a_{k+r} \lambda^{k+r} = 0.$$
 (1.11)

Справедлива

Лемма 1. Корни уравнения (1.11) имеют ви ∂ :

$$\bar{\mu}_i = \mu_i + \varepsilon_i \ (i = 1, \ldots, k) \qquad u \qquad \frac{\bar{\nu}_r}{\varepsilon} = \frac{\nu_r + \varepsilon_r'}{\varepsilon} \ (r = 1, 2, \ldots, l),$$

где ε_i и ε_r' стремятся κ нулю вместе c ε , μ_i — корни уравнения (1.3), ν_r — корни уравнения (1.10).

Доказательство леммы приведено в конце параграфа.

Как уже оговорено, мы оѓраничимся случаями, когда числа μ_i и числа ν_r попарно различны.

 $^{^{1}}$) Задача не усложнилась бы, если бы коэффициенты a_{j} представляли собой степенные ряды по ε .

Общее решение уравнения (1.8) имеет вид:

$$y_{\varepsilon} = \sum_{j=1}^{k} \widetilde{c}_{j} e^{\overline{\mu}_{j} x} + \sum_{r=1}^{l} \widetilde{c}_{k+r} e^{\frac{\overline{\nu}_{r}}{\varepsilon} x}. \tag{1.12}$$

Если один из корней v_r имеет положительную вещественную часть, то соответствующее частное решение $\exp\left(\frac{\overline{v_i}}{\varepsilon}x\right)$ уравнения (1.8) стремится при $\varepsilon \to 0$ к бесконечности для любого x > 0.

Мы назовем вырождение задачи $A_{\rm e}$ в задачу $A_{\rm 0}$ гегулярным, если вещественные части всех корней ν_r уравнения $Q_{\rm 0}(r)=0$ отриц тельны. Условиями этого являются так называемые условия Рауса—Гурвица (см., например, [20], гл. XV).

Пусть имеет место регулярное вырождение. Мы обозначим корни дополнительного характеристического уравнения через $-\lambda_r (\nu_r = -\lambda_r)$ $(r=1,\ldots,l);$ им отвечают корни $-\frac{\overline{\lambda_r}}{\varepsilon} = -\frac{\lambda_r-\varepsilon_r'}{\varepsilon}$ характеристического уравнения для (1.8) и, соответственно, частные решения уравнения (1.8), которые запишем в виде $\varepsilon^k \exp\left(-\frac{\overline{\lambda_r}}{\varepsilon}x\right)$.

Тогда общее решение уравнения (1.8) имеет вид:

$$y_{\varepsilon} = \sum_{j=1}^{k} \widetilde{c}_{j} \exp(\overline{\mu}_{j} x) + \sum_{r=1}^{l} \widetilde{c}_{k+r} \varepsilon^{k} \exp\left(-\frac{\overline{\lambda}_{r} x}{\varepsilon}\right). \tag{1.13}$$

Условия (1.9) теперь можно записать как систему

$$\sum_{j=1}^{k} \widetilde{c_j} (\overline{\mu_j})^i + \sum_{r=1}^{l} \varepsilon^{k-i} \widetilde{c_{k+r}} (-\overline{\lambda}_r)^i = D_i \qquad (i = 0, 1, \dots, k+l-1)$$
 (1.14)

из (k+l) линейных уравнений относительно \widetilde{c}_j $(j=1,\,2,\,\ldots,\,k+l);$ первые k уравнений системы (1.14) можно представить в виде

$$\sum_{j=1}^{k} \widetilde{c_{j}} (\bar{\mu_{j}})^{i} + \sum_{r=1}^{l} O(\varepsilon) \widetilde{c_{k+r}} = D_{i} \quad (i = 0, 1, ..., k-1).$$
 (1.14')

Следующие l уравнений после умножения на $\varepsilon^{\alpha}(\alpha=i-k)$ примут вид:

$$\sum_{j=1}^{k} \varepsilon^{\alpha} (\overline{\mu}_{j})^{k+\alpha} \widetilde{c}_{j} + \sum_{r=1}^{l} (-\overline{\lambda}_{r})^{k+\alpha} \widetilde{c}_{k+r} = \varepsilon^{\alpha} D_{k+\alpha}$$
 (1.14")

 $(\alpha=0,\ 1,\ \dots,\ l-1)$. При $\epsilon\longrightarrow 0$ система (1.14') перейдет в систему (1.6) с определителем $W(\mu_1,\ \mu_2,\ \dots,\ \mu_k)$. Уравнения (1.14'') при $\epsilon\longrightarrow 0$ перейдут в уравнения:

$$\sum_{j=1}^{k} (\mu_{j})^{k} c_{j} + \sum_{r=1}^{l} (-\lambda_{r})^{k} c_{k+r} = D_{k} \quad \text{при } \alpha = 0, \\
\sum_{r=1}^{l} (-\lambda_{r})^{k+\alpha} c_{k+r} = 0 \quad \text{при } \alpha = 1, 2, \dots, l-1.$$
(1.15)

Определитель системы (1.6), (1.15) равен

$$B = W (\mu_{1}, \ldots, \mu_{k}) \begin{vmatrix} (-\lambda_{1})^{k} \cdots (-\lambda_{l})^{k} \\ \cdots \cdots \cdots \\ (-\lambda_{1})^{k+l-1} \cdots (-\lambda_{l})^{k+l-1} \end{vmatrix} =$$

$$= W (\mu_{1}, \ldots, \mu_{k}) \cdot W (-\lambda_{1}, \ldots, -\lambda_{l}) \cdot (\lambda_{1} \ldots \lambda_{l})^{k} (-1)^{k+l}.$$

При наших предположениях $\lambda_i \neq 0$, $W(\lambda_1, \ldots, \lambda_l) \neq 0$, $W(\mu_1, \ldots, \mu_k) \neq 0$; следовательно, $B \neq 0$.

Коэффициенты и правые части допредельной системы (1.14'), (1.14'') стремятся при $\varepsilon \to 0$ к соответствующим коэффициентам и правым частям предельной системы (1.6), (1.15). А значит, и определитель B_ε допредельной системы стремится при $\varepsilon \to 0$ к определителю B предельной системы. Следовательно, при достаточно малых ε $B_\varepsilon \neq 0$, система (1.14'), (1.14'') разрешима, и ее решения $\widetilde{c_j}$ $(j=1,\ldots,k+l)$ стремятся к решениям c_j предельной системы: $\widetilde{c_j} = c_j + \eta_j$, $\eta_j \to 0$ при $\varepsilon \to 0$.

Итак, решение y_{ε} задачи A_{ε} равно:

$$y_{\epsilon} = \sum_{j=1}^{k} \widetilde{c}_{j} \exp(\overline{\mu_{j}} x) + \sum_{r=1}^{l} \varepsilon^{k} \widetilde{c}_{k+r} \exp\left(-\frac{\overline{\lambda_{r}} x}{\varepsilon}\right).$$

Введем обозначения:

$$v_{\varepsilon} = \sum_{r=1}^{l} \varepsilon^{h} \widetilde{c}_{h+r} \exp\left(-\frac{\overline{\lambda}_{r}x}{\varepsilon}\right),$$

$$z_{\varepsilon} = y_{\varepsilon} - y_{0} - v_{\varepsilon} = \sum_{j=1}^{h} \widetilde{c}_{j} e^{\overline{\mu}_{j}x} - y_{0}(x) = \sum_{j=1}^{h} (c_{j} + \eta_{j}) e^{\overline{\mu}_{j}x} - \sum_{j=1}^{h} c_{j} e^{\mu_{j}x} =$$

$$= \sum_{j=1}^{h} \eta_{j} e^{(\mu_{j} + \varepsilon_{j})x} + \sum_{j=1}^{h} c_{j} e^{\mu_{j}x} (e^{\varepsilon_{j}x} - 1).$$

Функция $z_{\epsilon}(x)$ стремится при $\epsilon \to 0$ равномерно к нулю на любом отрезке [b, a], a > b, вместе со всеми своими производными.

Функция $v_{\varepsilon}(x)$ имеет характер погранслоя k-го порядка около точки x=0. Она ограничена вместе со своими производными до k-го порядка включительно; при любом b>0 и a>b она стремится при $\varepsilon \longrightarrow 0$ равномерно к нулю на отрезке [b,a] вместе со всеми своими производными.

Таким образом, мы доказали следующую теорему:

Tе о р е м а 4. Pешение y_{ε} за ∂ ачи A_{ε} пре ∂ ставимо в ви ∂ е

$$y_{\varepsilon}(x) = y_{0}(x) + v_{\varepsilon}(x) + z_{\varepsilon}(x), \qquad (1.16)$$

где $y_0(x)$ — решение вырожденной задачи A_0 ; $v_{\epsilon}(x)$ — функция типа погранслоя k-го порядка в окрестности точки x=0, а z_{ϵ} равномерно на любом отрезке $[b,a],\ b < a$, стремится к нулю при $\epsilon \to 0$ вместе со всеми своими производными.

2. Рассмотрим сейчас случай, когда задача A_0 есть прежняя задача Коши (1.1), (1.2), а задача A_{ϵ} состоит в нахождении решения уравнения 2 успехи матем. наук, т. XII, вып. 5

(1.8) на отрезке [0, 1] при прежних k условиях (1.2) и дополнительных l условиях в другой граничной точке x=1:

$$\left. \frac{d^r y_{\varepsilon}}{dx^r} \right|_{x=1} = D_{r1} \quad (r = 0, 1, \dots, l-1).$$

Общее решение y_{ε} уравнения (1.8) запишем, заменяя в (1.12) \widetilde{c}_{h+r} на $e^{-\frac{\overline{\nu}_r}{\varepsilon}}\widetilde{c}_{b+r}$:

$$y_{\varepsilon} = \sum_{j=1}^{k} \widetilde{c_{j}} \exp \overline{\mu_{j}} x + \sum_{r=1}^{l} \widetilde{c_{k-r}} \exp \frac{\overline{\nu_{r}}(x-1)}{\varepsilon}.$$

Если для какого-нибудь корня ν_i уравнения (1.10) $\operatorname{Re}\nu_i < 0$, то при достаточно малом ε $\operatorname{Re}\overline{\nu_i} < d_0 < 0$. Частное решение $\exp\frac{\overline{\nu_i}\,(x-1)}{\varepsilon}$ для любого x < 1 стремится $\kappa \infty$ при $\varepsilon \longrightarrow 0$. Если же все $\operatorname{Re}\nu_i > 0$, то при достаточно малом ε все такие частные решения имеют характер погранслоя вблизи гочки x=1.

Мы скажем в этом случае: задача A_{ϵ} регулярно вырождается в задачу A_0 , если уравнение (1.10) имеет все l корней с положительными вещественными частями. Следует ожидать, что в этом случае решение задачи A_{ϵ} имеет тот же вид (1.16), где v_{ϵ} на этот раз обозначает функцию типа погранслоя в окрестности точки x=1. Мы докажем этот факт в более общем случае.

Итак, пусть теперь задача A_{ε} есть решение уравнения (1.8) при тех же условиях (1.2) и дополнительных l_1 условиях в точке x=0 и $l_2=l-l_1$ условиях в точке x=1 ($l_1+l_2=l$). Регулярным вырождением задачи A_{ε} в задачу A_0 мы будем считать вырождение, когда уравнение (1.10) $Q_0(\lambda)=0$ имеет l_1 корней: $-\lambda_1, \ -\lambda_2, \ \ldots, \ -\lambda_{l_1}, \ c$ отрицательными вещественными частями и l_2 корней: $\nu_1, \nu_2, \ \ldots, \ \nu_{l_2}, \ c$ положительными вещественными частями. Характеристическое уравнение (1.11) имеет корни:

$$\overline{\mu}_{i} = \mu_{i} + \varepsilon_{i}, \quad -\frac{\overline{\lambda}_{r}}{\varepsilon} - \frac{\lambda_{r} + \varepsilon_{r}}{\varepsilon}, \quad \frac{\overline{\nu}_{s}}{\varepsilon} = \frac{\overline{\nu}_{s} + \varepsilon_{s}}{\varepsilon} \\
(i = 1, \dots, k; \ r = 1, \dots, l_{1}; \quad s = 1, \dots, l_{2}).$$

Общее решение уравнения (1.8) можно записать в виде

$$y_{\varepsilon}(x) = \sum_{j=1}^{k} \widetilde{c_{j}} e^{\overline{\mu}_{j}x} + \sum_{r=1}^{l_{1}} \varepsilon^{k_{1}} \widetilde{c_{k+r}} \exp\left(-\frac{\overline{\lambda_{r}}x}{\varepsilon}\right) + \sum_{s=1}^{l_{2}} \varepsilon^{k_{2}} \widetilde{c_{k+l_{1}+s}} \exp\left(\frac{\overline{\nu_{s}}(x-1)}{\varepsilon}\right).$$

 $\sum_{r=1}^{l_1} arepsilon^{k_1} ar{c}_{k+r} \exp\left(-rac{\widetilde{\lambda}_r x}{arepsilon}
ight)$ представляет собой погранслой k_1 -го порядка

в окрестности точки x=0, причем она обладает l_1 степенями свободы, их столько, сколько дополнительных условий для задачи A_{ϵ} в точке x=0.

$$\mathbf{C}_{\mathbf{y}\mathbf{m}\mathbf{m}\mathbf{a}} = \sum_{s=1}^{l_2} \mathbf{s}^{k_2} \widetilde{c}_{k+l_1+s} \exp\left[\frac{\widetilde{\mathbf{v}}_s\left(x-1
ight)}{\mathbf{s}}\right]$$
 представляет собой погранслой k_2 -го

порядка в окрестности точки x=1; она обладает l_2 степенями свободы, — их столько, сколько дополнительных условий для задачи $A_{\mathfrak s}$ в точке x=1.

Мы можем рассчитывать, что решение задачи A_{ε} по-прежнему можно записать в форме (1.16), где v_{ε} есть функция типа погранслоя в окрестности точек x = 0 и x = 1. Это будет доказано в следующем пункте, при этом мы установим и разрешимость задачи A_{ε} .

3. Общий случай. Введем обозначения:

$$F_{i0}(u) = \frac{d^i u}{dx^i}\Big|_{x=0}, \quad F_{i1}(u) = \frac{d^i u}{dx^i}\Big|_{x=1} \qquad (i=0, 1, \ldots).$$

Рассмотрим задачу $A_{\mathbf{0}}$ для вырожденного уравнения

$$L_0 y \equiv \sum_{i=0}^k a_i \, y^{(i)} = 0 \tag{1.1}$$

при граничных условиях

$$F_{i0}(y) = D_i$$
 $(i = 0, 1, ..., k_1 - 1),$ (1.17)

$$F_{i1}(y) - E_i$$
 $(i = 0, 1, ..., k_2 - 1; k_1 + k_2 = k).$ (1.17')

Мы скажем: задача $A_0 = (1.1)$, (1.17), (1.17') разрешима, если нуль не является собственным значением оператора $L_{\scriptscriptstyle 0}$ при однородных аналогах условий (1.17), (1.17'), т. е. если эта задача при таких однородных условиях имеет лишь тривиальное решение $y \equiv 0$. В этом случае задача A_0 имеет, и притом единственное, решение при любых D_i и E_i в условиях (1.17), (1.17').

Пусть μ_i $(i=1,\ldots,k)$ — корни характеристического для (1.1) уравнения (1.3). Общее решение уравнения (1.1) имеет вид:

$$y(x) = \sum_{j=1}^{k} c_j \omega_j, \quad \omega_j = \exp \mu_j x. \tag{1.4'}$$

Для того чтобы выполнялись граничные условия (1.17), (1.17), коэффициенты c_i в (1.4') должны удовлетворять системе k линейных уравнений:

$$\sum_{j=1}^{k} F_{\alpha_0}(w_j) c_j = D_{\alpha} \quad (\alpha = 0, 1, \dots, k_1 - 1), \tag{1.18}$$

$$\sum_{j=1}^{k} F_{\beta 1}(w_j) c_j = E_{\beta} \quad (\beta = 0, 1, ..., k_2 - 1). \tag{1.18'}$$

В случае разрешимости задачи A_0 определитель B_1 этой системы

Рассмотрим теперь задачу A_{ϵ} : найти решение уравнения

$$L_{\varepsilon}u = L_{0}u + \sum_{r=1}^{l} \varepsilon^{r} a_{k-r} u^{(k+r)} = 0$$
 (1.8)

при условиях (1.17), (1.17') и дополнительных условиях

$$F_{k_1+r, 0}(u) = D_{k_1+r} \ (r = 0, 1, \dots, l_1 - 1),$$
 (1.19)

$$F_{k_1+r, 0}(u) = D_{k_1+r} \quad (r = 0, 1, \dots, l_1 - 1),$$

$$F_{k_2+s, 1}(u) = E_{k_2+s} \quad (s = 0, 1, \dots, l_2 - 1).$$

$$(1.19)$$

Возьмем дополнительное характеристическое уравнение

$$Q_0(\lambda) = \sum_{r=0}^{l} a_{h+r} \lambda^r = 0.$$
 (1.10)

Мы скажем: задача A_{ε} регулярно вырождается в задачу A_{0} , если среди корней уравнения (1.10) имеется l_{1} корней: $-\lambda_{1},\ldots,-\lambda_{l_{1}}$ с отрицательными вещественными частями, и $l_{2}=l-l_{1}$ корней: $\nu_{1},\ldots,\nu_{l_{2}}$ с положительными вещественными частями.

Характеристическое уравнение (1.11) имеет в силу леммы 1 корни $\bar{\mu}_i = \mu_{\dot{x}} + \varepsilon_i$ $(i=1,\ 2,\ \ldots,\ k),$ $-\frac{\bar{\lambda}_i}{\varepsilon} = -\frac{1}{\varepsilon}\,(\lambda_i + \varepsilon_i')$ $(i=1,\ \ldots,\ l_1),$ $\frac{\bar{\nu}_j}{\varepsilon} = \frac{1}{\varepsilon}\,(\gamma_j + \varepsilon_j'')$ $(j=1,\ \ldots,\ l_2).$ Числа ε_i , ε_i' , ε_i'' стремятся к нулю вместе c ε : ε_i , ε_i' , $\varepsilon_i'' = o$ (1).

Общее решение уравнения (1.8) имеет вид:

$$y_{\varepsilon} = \sum_{j=1}^{k+l} \widetilde{c}_{j} \widetilde{w}_{j},$$

$$\widetilde{w}_{j} = \exp(\overline{u}_{j}x) \quad (j = 1, 2, \dots, k),$$

$$\widetilde{w}_{k+r} = \varepsilon^{k_{1}} \exp\left(-\frac{\overline{\lambda}_{r}x}{\varepsilon}\right) \quad (r = 1, 2, \dots, l_{1}),$$

$$\widetilde{w}_{k+l_{1}+s} = \varepsilon^{k_{2}} \exp\left(\frac{\overline{\nu}_{s} (x-1)}{\varepsilon}\right) \quad (s = 1, 2, \dots, l_{2}).$$

$$(1.20)$$

Теорема 2. Если вырожденная задача A_0 ((1.1), (1.17), (1.17')) разрешима и имеет место регулярное вырождение задачи A_{ε} в задачу A_0 , то при достаточно малом ε задача A_{ε} также разрешима и решение u_{ε} этой задачи имеет вид:

$$y_{\varepsilon} = y_{0} + v_{\varepsilon} + z_{\varepsilon}. \tag{1.16}$$

Здесь $y_0(x)$ — решение вырожденной задачи A_0 ; v_{ϵ} — функция типа погранслоя (см. ниже формулу (1.25)); она стремится при $\epsilon \to 0$ равномерно вместе со всеми своими производными к нулю на любом отрезке, внутреннем к [0, 1]; функция $z_{\epsilon}(x)$ стремится при $\epsilon \to 0$ равномерно к нулю вместе со всеми своими производными на всем отрезке [0, 1].

Доказательство. Условия (1.17), (1.17'), (1.19), (1.19') в силу (1.20) примут вид:

$$\sum_{\substack{j=1\\k+l}}^{k+l} F_{\alpha 0}(\widetilde{w}_j) \ \widetilde{c_j} = D_{\alpha} \qquad (\alpha = 0, 1, \ldots, k_1 + l_1 - 1), \tag{1.21}$$

$$\sum_{j=1}^{k+1} F_{\beta 1}(\widetilde{w}_j) \widetilde{c}_j = E_{\beta} \qquad (\beta = 0, 1, \dots, k_2 + l_2 - 1). \tag{1.21'}$$

Заметим, что, в силу (1.20) при $\alpha < k_1$ и $r = 1, 2, \ldots, l_1$

$$F_{\alpha, 0}\left(\widetilde{w}_{k+r}\right) = \frac{d^{\alpha}}{dx^{\alpha}} \left[\varepsilon^{k_1} \exp\left(-\frac{\overline{\lambda}_r x}{\varepsilon}\right) \right]_{x=0} = \varepsilon^{k_1 - \alpha} \left(-\overline{\lambda}_r\right)^{\alpha} = O\left(\varepsilon\right);$$

далее, при $s=1,\,2,\,\ldots,\,l_2$ и любом $a\geqslant 0$

$$F_{\alpha, 0}\left(\widetilde{w}_{k+l_1+s}\right) = \frac{d^{\tau}}{dx^{\tau}} \left(\varepsilon^{k_2} \exp\left(\frac{\overline{v}_s(x-1)}{\varepsilon}\right)\right)_{x=0} = O(\varepsilon). \tag{1.22}$$

Поэтому первые k_1 уравнений (1.21) имеют вид:

$$\sum_{j=1}^{k} F_{\alpha, 0}(\widetilde{w}_{j}) \widetilde{c}_{j} + \sum_{r=1}^{l} O(\varepsilon) \widetilde{c}_{k+r} = D_{\alpha} \qquad (\alpha = 0, 1, \dots, k_{1} - 1).$$
 (1.23)

Аналогично, первые k_2 уравнений (1.21') имеют вид:

$$\sum_{j=1}^{k} F_{\beta, 1}(\widetilde{w}_{j}) \widetilde{c}_{j} + \sum_{r=1}^{l} O(\varepsilon) \widetilde{c}_{k+r} = E_{\beta} \qquad (\beta = 0, 1, \dots, k_{2} - 1). \quad (1.23')$$

При $r=1,\ldots,l_1; \gamma \geqslant 0,$

$$F_{k_1+\gamma,\ 0}\left(\overset{\sim}{\omega}_{k+r}\right) = \varepsilon^{k_1} \frac{d^{k_1+\gamma}}{dx^{k_1+\gamma}} \left[\exp\left(-\frac{\overline{\lambda}_r x}{\varepsilon}\right) \right]_{x=0} = \varepsilon^{-\gamma} \left(-\overline{\lambda}_r\right)^{k_1+\gamma}.$$

При $s = 1, 2, ..., l_2, \gamma \gg 0$, в силу (1.22),

$$F_{k_1+\gamma, 0}\left(\widetilde{w}_{k+r+s}\right) = O\left(\varepsilon\right).$$

Поэтому уравнения (1.21) при $\alpha = k_1 + \gamma$; $\gamma = 0, 1, \ldots, l_1 - 1$ запишутся после умножения обеих частей ϵ^{γ} в виде

$$\sum_{j=1}^{k} \varepsilon^{\gamma} F_{k_1+\gamma, 0} (\widetilde{w}_j) \widetilde{c}_j + \sum_{r=1}^{l_1} (-\overline{\lambda}_r)^{k_1+\gamma} \widetilde{c}_{k+r} + \sum_{s=1}^{l_2} O(\varepsilon) \widetilde{c}_{k+r+s} - \varepsilon^{\gamma} D_{k_1+\gamma} \qquad (\gamma = 0, 1, \dots, l_1 - 1).$$

$$(1.23'')$$

Аналогично, уравнения (1.21') при $\beta=k_2+\dot{\mathfrak{o}};\ \dot{\mathfrak{o}}=0,\ 1,\ \ldots,\ l_2-1$ примут вид:

$$\sum_{j=1}^{k} \mathfrak{s}^{\delta} F_{h_{2}+\delta, 1}(\widetilde{w}_{j}) \widetilde{c}_{j} + \sum_{r=1}^{l_{1}} O(\mathfrak{s}) \widetilde{c}_{h+r} + \sum_{s=1}^{l_{2}} (\overline{\mathsf{v}_{s}})^{h_{2}+\delta} \widetilde{c}_{h+l_{1}+s} = \mathfrak{s}^{\delta} E_{h_{2}+\delta} \quad (\delta = 0, 1, \dots, l_{2} - 1).$$

$$(1.23''')$$

При $\varepsilon=0$ уравнения (1.23), (1.23') перейдут в уравнения (1.18), (1.18') с определителем $B_1\neq 0$. Уравнения (1.23") перейдут в уравнения:

$$\sum_{j=1}^{k} F_{k1,0} (\omega_j) c_j + \sum_{r=1}^{l_1} (-\lambda_r)^{k_1} c_{k+r} = D_{k_1} \text{ при } \gamma = 0,$$

$$\sum_{r=1}^{l_1} (-\lambda_r)^{k_1 + \gamma} c_{k+r} = 0 \qquad \text{при } \gamma = 1, \dots, l_1 - 1.$$
(1.24)

Уравнения (1.23''') перейдут в уравнения:

$$\sum_{j=1}^{k} F_{k2,1} (\omega_j) c_j + \sum_{s=1}^{l_2} (v_s)^{k_2} c_{k+l_1+s} = E_{k_2} \text{ при } \delta = 0,
\sum_{s=1}^{l_2} (v_s)^{k_2+\delta} c_{k+l_1+s} = 0 \text{ при } \delta = 1, \dots, l_2 - 1.$$
(1.24')

Детерминант B предельной системы (1.18), (1.18'), (1.24), (1.24') равен:

$$B = B_1 B_2 B_3,$$
 где $B_1 \neq 0, \ B_2 = |\ (-\lambda_r)^{h_1 + \gamma}|_{\substack{r=1,\ 2,\ \dots,\ l_1\\ \gamma=0,\ 1,\ \dots,\ l_1-1}} \neq 0, \qquad B_3 = |\ \begin{smallmatrix} \mathsf{y}^{k_2 + \delta}_{s} \\ \mathsf{s} = \mathsf{1},\ \dots,\ l_2\\ \mathsf{\delta} = \mathsf{0},\ 1,\ \dots,\ l_{2-1} \end{smallmatrix} \neq 0.$

Поэтому $B \neq 0$.

Коэффициенты и правые части системы (1.23) - (1.23''') с детерминантом B_{ϵ} стремятся при $\epsilon \to 0$ к коэффициентам и правым частям предельной системы (1.18), (1.18'), (1.24), (1.24') с детерминантом $B \neq 0$. Значит, при

 $egin{aligned} \mathbf{\varepsilon} & \longrightarrow 0, \quad B_{egin{aligned} \mathbf{\varepsilon} & \longrightarrow b \end{aligned}} \neq 0.$ Следовательно, при достаточно малых $\mathbf{\varepsilon} B_{egin{aligned} \mathbf{\varepsilon} & \ne 0 \end{aligned}}$ и задача $A_{egin{aligned} \mathbf{\varepsilon} & \longrightarrow b \end{aligned}}$ разрешима.

Решения $\widetilde{c_j}$ $(j=1,\ldots,k+l)$ системы (1.23)-(1.23''') стремятся к решениям c_j $(j=1,\ldots,k+l)$ предельной системы (1.18), (1.18'), (1.24), (1.24'):

$$\widetilde{c}_j = c_j + \eta_j, \ \eta_j \longrightarrow 0 \ \mathrm{при} \ arepsilon \longrightarrow 0 \ (j=1, \, 2, \, \ldots, \, k+l).$$

!!так (см. (1.20)), решение y_{ε} задачи A_{ε} имеет вид:

$$y_{\varepsilon} = \sum_{i=1}^{k+l} (c_i + \eta_i) \widetilde{w}_i.$$

Введем обозначения.

$$egin{aligned} oldsymbol{z}_{\mathrm{E}} &= \sum_{i=1}^{k} \left(c_i + \eta_i
ight) \widehat{oldsymbol{w}}_i - oldsymbol{y}_0 \left(x
ight), \ oldsymbol{v}_{\mathrm{E}} &= \sum_{r=1}^{l} \left(c_{k+r} + \eta_{k+r}
ight) \widetilde{oldsymbol{w}}_{k+r}. \end{aligned}$$

Тогда

$$y_{\varepsilon} = y_{0}(x) + v_{\varepsilon}(x) + z_{\varepsilon}(x).$$

Так как y_0 — решение задачи A_0 — имеет вид:

$$\begin{aligned} \boldsymbol{y}_0 &= \sum_{i=1}^{k_1 \cdots i} \boldsymbol{c}_i \boldsymbol{w}_i, \ \boldsymbol{w}_i &= \boldsymbol{\ell}^{\mu} i^{x}, \\ \widetilde{\boldsymbol{w}}_i &= e^{\widetilde{\mu}} i^{x} = e^{(\mu_i + \varepsilon_i) \cdot x} \quad (i = 1, 2, \dots, k), \end{aligned}$$

 \mathbf{TO}

$$z_{\varepsilon} = \sum_{i=1}^{k} \eta_{i} e^{(\mu_{i} + \varepsilon_{i}) \cdot x} + \sum_{i=1}^{k} c_{i} e^{\mu_{i} x} (e^{\varepsilon_{i} x} - 1).$$

Поскольку при $\varepsilon \to 0$ $\eta_i \to 0$ и $\varepsilon_i \to 0$, то z_ε при $\varepsilon \to 0$ стремится равномерно на отрезке [0,1] вместе со всеми своими производными к нулю. Наконец,

$$v_{\varepsilon} = \sum_{r=1}^{l} \left(c_{k+r} + \eta_{k+r} \right) \widetilde{w}_{k+r} - \varepsilon^{k_1} \sum_{r=1}^{l_1} \left(c_{k+r} + \eta_{k+r} \right) \exp\left(-\frac{\overline{\lambda}_r x}{\varepsilon} \right) + \\ + \varepsilon^{k_2} \sum_{s=1}^{l_2} \left(c_{k+l_1+s} + \eta_{k+l_1+s} \right) \exp\left(\frac{\overline{\nu}_s (x-1)}{\varepsilon} \right).$$
(1.25)

Первая сумма справа в (1.25) при $\varepsilon \to 0$ стремится равномерно к нулю вместе со всеми своими производными на [0, 1] вне любой окрестности точки x=0, а вторая сумма— вне любой окрестности точки x=1.

Теорема доказана.

Примечание 1. v_{ε} носит характер погранслоя k_1 -го порядка в окрестности точки x=0 и k_2 -го порядка в окрестности точки x=1.

Примечание 2. Теорема осталась бы справедливой, если бы условия (1.19), (1.19') были заменены условиями:

$$F_{k_1+r, 0}(y_{\epsilon}) = \epsilon^{-r} D_{k_1+r} \ (r=0, 1, \ldots, l_1-1),$$

 $F_{k_2+s, 1}(y_{\epsilon}) = \epsilon^{-s} E_{k_2+s} \ (s=0, 1, \ldots, l_2-1).$

Пример 1. В задачах п. 2 вырожденная задача A_0 есть задача Коши, которая разрешима. Если вырождение задачи A_{ϵ} в задачу A_0 регулярно, то и задача A_{ϵ} разрешима при малых ϵ и имеет место представление (1.16), описанное в п. 3.

Пример 2. Пусть задача $A_{\scriptscriptstyle 0}$ заключается в решении уравнения

$$L_0 y \Longrightarrow y'' = 0$$

при условиях $y\left(0\right)=D_{1},\;y\left(1\right)=E_{1}.$ Так как нуль не является собственным значением оператора $L_{0}=\frac{d^{2}}{dx^{2}}$ при условиях $y\left(0\right)=0,\;y\left(1\right)=0,$ то задача A_{0} разрешима.

Задача A_{ϵ} заключается в решении уравнения

$$L_{\varepsilon}y \equiv -\varepsilon^2 y^{\text{IV}} + \varepsilon 2a_3 y^{\prime\prime\prime} + y^{\prime\prime} = 0$$

при прежних двух граничных условиях и дополнительных условиях

$$y'(0) = D_2, y'(1) = E_2.$$

Дополнительное характеристическое уравнение имеет вид:

$$Q_0(\lambda) \equiv -\lambda^2 + 2a_3\lambda + 1 = 0.$$

При любом a_3 оба корня этого уравнения, $-a_3 \pm \sqrt{a_3^2 + 1}$, — вещественные, — один положительный и один — отрицательный. Условие регулярности выполнено. Задача A_{ϵ} разрешима и ее решение имеет вид (1.16), где v_{ϵ} — функция типа погранслоя первого порядка в окрестности точек x=0 и x=1.

4. Заметим, что коэффициенты $\widetilde{c}_i = c_i(\epsilon)$, $\widetilde{c_i}(0) = c_i$ и показатели $\overline{\mu}_i = \mu_i(\epsilon)$, $\overline{\mu}_i(0) = \mu_i$, $\overline{\lambda}_i = \lambda_i(\epsilon)$, $\overline{\lambda}_i(0) = \lambda_i$, $\overline{\nu}_i = \nu_i(\epsilon)$, $\overline{\nu}_i(0) = \nu_i$ (см. (1.23) — (1.23'''), (1.20)) в нашем случае являются аналитическими функциями ϵ . Поэтому в формуле (1.20),

$$\sum_{j=1}^{k} \widetilde{c}_{j} \widetilde{\omega}_{j} = \sum_{j=1}^{k} \widetilde{c}_{j} e^{\overline{\mu}_{j} x} = \sum_{j=1}^{k} c_{j} e^{\overline{\mu}_{j} x} + \varepsilon \omega_{1}(x) + \ldots + \varepsilon^{n} \omega_{n}(x) + \cdots + \varepsilon^{n+1} \omega_{n-1}(\varepsilon, x) = \omega_{0}(x) + \varepsilon \omega_{1}(x) + \ldots + \varepsilon^{n} \omega_{n}(x) + \varepsilon^{n+1} \omega_{n+1}(\varepsilon, x). \quad (1.26)$$

Здесь $w_{0}\left(x\right)=\sum_{i=1}^{k}c_{j}e^{\mu_{j}x},\ w_{i}\left(x\right)\ (i=1,\,2,\,\ldots,\,n)$ — ограниченные вместе со

всеми своими производными функции $x, w_{n+1}(\varepsilon, x)$ ограничена равномерно по ε (для $0 < \varepsilon < \varepsilon_0$, где ε_0 —достаточно малая константа) вместе со своими производными по x. Имеем также

$$\sum_{r=1}^{l_1} \widetilde{c}_{k+r} \varepsilon^{k_1} e^{-\frac{\lambda_r x}{\varepsilon}} = \varepsilon^{k_1} v_{00} + \varepsilon^{k_1+1} v_{10} + \ldots + \varepsilon^{n+p-1} v_{n+p-1-k_1,0} + \varepsilon^{n+p} v_{n+p-k_1,0}, \quad (1.27)$$

где $v_{00}=\sum_{r=1}^{l_1}c_{h+r}e^{-\frac{\lambda_r x}{\varepsilon}}$ погранслой нулевого порядка в окрестности точки x=0,

$$\begin{split} v_{10} &= \sum_{r=1}^{l_1} e^{-\frac{\lambda_r x}{\varepsilon}} \frac{d}{d\varepsilon} \left(\widetilde{c}_{k+r} e^{-\frac{\widetilde{\lambda_r} - \lambda_r}{\varepsilon} x} \right) \Big|_{\varepsilon=0} = \sum_{r=1}^{l_1} e^{-\frac{\lambda_r x}{\varepsilon}} \left[d_{k+r} - c_{k+r} \lambda_{r2} x \right], \\ d_{k+r} &= \frac{d}{d\varepsilon} \left(\widetilde{c}_{k+r} \right) \Big|_{\varepsilon=0}, \quad \lambda_{r2} = \frac{1}{2!} \frac{d^2 \widetilde{\lambda_r}}{d\varepsilon^2} \Big|_{\varepsilon=0}. \end{split}$$

 v_{10} — функция типа погранслоя нулевого порядка в окрестности точки x=0. Аналогичное строение имеют функции v_{i0} при $i=2,\,3,\ldots$, причем каждое v_{i0} есть сумма многочленов от x i-го порядка, умноженных

на $e^{-\frac{rr}{\epsilon}}$; v_{i0} суть «многочлены» типа погранслоя нулевого порядка. Точно так же имеет характер погранслоя и остаточный член $\epsilon^{n+p}v_{n+p-k1,0}(\epsilon,x)$. Он является величиной (равномерно по x) порядка ϵ^{n+p} , а его производная по x j-го порядка есть величина порядка ϵ^{n+p-j} . Аналогичное разложение

будет и у суммы $\sum_{s=1}^{l_2} \widetilde{c}_{k+l_1+s} \exp\left(\frac{\mathsf{v}_s\left(x-1\right)}{\varepsilon}\right)$, и, соединяя его с разложением

(1.27), мы получим:

$$v_{\varepsilon} = \sum_{j=1}^{l} \widetilde{c}_{k+j} \widetilde{w}_{k+j} = \sum_{r=1}^{l_1} \widetilde{c}_{k+r} \varepsilon^{k_1} \exp\left(-\frac{\overline{\lambda}_{r}x}{\varepsilon}\right) + \sum_{s=1}^{l_2} \widetilde{c}_{k+r+s} \varepsilon^{k_2} \exp\left(\frac{\overline{\nu}_{s}(x-1)}{\varepsilon}\right) =$$

$$= \varepsilon^{\overline{k}} v_0 + \varepsilon^{\overline{k}+1} v_1 + \dots + \varepsilon^{n+p} v_{n+p-\overline{k}}, \qquad (1.28)$$

где $\bar{k}=\min{(k_1,\,k_2)};\,\,v_i$ суть функции типа погранслоя $(k_1-\bar{k})$ -го порядка в окрестности точки x=0 и $(k_2-\bar{k})$ -го порядка в окрестности точки x=1 и вида, аналогичного функциям $v_{00},\,v_{10},\ldots$ Остаточный член $\varepsilon^{n+r}v_{n+p-\bar{k}}$ является функцией типа погранслоя порядка $k_1+n+p-\bar{k}$ в окрестности точки x=0 и порядка $k_2+n+p-\bar{k}$ в окрестности точки x=1. Этот остаток имеет равномерно на [0,1] порядок ε^{n+p} , а его j-я производная порядок, на j единиц меньший.

Из (1.26) и (1.28) следует асимптотическое представление решения y_{ε} задачи A_{ε} :

$$y_{\varepsilon}(x) = [w_0 + \varepsilon w_1 + \ldots + \varepsilon^n w_n] + \varepsilon^{\overline{k}} [v_0 + \varepsilon v_1 + \ldots + \varepsilon^{n+p-\overline{k}-1} v_{n+p-\overline{k}-1}] + z(\varepsilon, x),$$

$$(1.28')$$

где функции $w_i(x)$ ограничены вместе со всеми своими производными; v_i — функции типа погранслоя описанного выше вида; остаток $z(\varepsilon, x) = \varepsilon^{n+1}w_{n+1}(\varepsilon, x) + \varepsilon^{n+p}v_{n+p-\overline{k}}(\varepsilon, x)$ есть величина порядка $\varepsilon^{n+1}(p \gg 1)$ вместе со своими первыми p-1 производными по x; производная же p-1+j-го порядка имеет порядок ε^{n+1-j} .

Примечание. При исследовании поведения решения уравнения (1.8) в окрестности точки x=1 естественно сделать замену переменного $x_1=1-x$, и тогда уравнение (1.8) примет вид:

$$\sum_{r=0}^{l} (-1)^{k+r} \varepsilon^r a_{k+r} \frac{d^{k+r} y}{dx_1^{k+r}} + \sum_{s=0}^{k-1} a_s (-1)^s \frac{d^s y}{dx_1^s} = 0.$$
 (1.29)

Граничные условия в точке x=1 превратятся в условия в точке $x_1=0$. Для уравнения (1.29) дополнительным характеристическим уравнением будет уравнение

$$Q_1(\tau) \equiv \sum_{r=0}^{l} (-1)^{h+r} a_{h+r} \tau^r = 0, \tag{1.30}$$

корни которого отличаются знаком от корней уравнения (1.10): $Q_0(\lambda)=0$. Число l_2 корней последнего уравнения с положительными вещественными частями равно числу корней уравнения (1.30) с отрицательными вещественными частями. Уравнения $Q_0(\lambda)=0$ и $Q_1(\tau)=0$ будем называть дополнительными характеристическими уравнениями в точках x=0 и x=1 соответственно. Условие регулярности вырождения задачи A_{ε} в задачу A_0 означает, что каждое из чисел l_1, l_2 корней с отрицательной вещественной частью дополнительного характеристического уравнения в граничных точках соответственно x=0 и x=1 совпадает с числом граничных условий (1.19), (1.19') в каждой из этих точек для задачи A_{ε} , выпадающих при переходе к предельной задаче A_0 . Такое определение регулярности вырождения в следующем параграфе будет перенесено на обыкновенные уравнения с переменными коэффициентами, а в дальнейшем— на уравнения в частных производных.

Доказательство леммы 1. Пусть уравнение (1.3): $P_0(\mu) \equiv \sum_{j=0}^R a_j \mu^j$ имеет корни $\mu_1, \mu_2, \ldots, \mu_k$ (корни могут быть и кратными); пусть $\mu_i = \mu_{i+1} = \ldots$ $\ldots = \mu_{i+p-1} = \mu$ — корень кратности p этого уравнения и пусть $S_\alpha(\mu)$ обозначает окружность радиуса $\alpha > 0$ вокруг точки μ . При достаточно малом α внутри $S_\alpha(\mu)$, кроме μ , нет других корней уравнения (1.3). Тогда логарифмический вычет P_0 по S_α равен p: $B_{S_\alpha}(P_0) = p$. Многочлены $P_\varepsilon(\mu) = \sum_{j=0}^k a_j \mu^j + \sum_{r=1}^l a_{k+r} \varepsilon^r \mu^{k+r}$ стремятся при $\varepsilon \to 0$ равномерно на S_α к многочлену $P_0(\mu)$ и потому логарифмический вычет P_ε : $B_{S_\alpha}(P_\varepsilon) \to B_{S_\alpha}(P_0) = p$. Но так как логарифмический вычет есть число целое, то при достаточно малых $\varepsilon > 0$ $B_{S_\alpha}(P_\varepsilon) = p$. Но тогда внутрь S_α попадут ровно p корней (в смысле суммы кратности) уравнения $P_\varepsilon(\mu) = 0$, которые мы обозначим через μ_i, μ_{i+1}, \dots \dots, μ_{i+p-1} . Отсюда

$$|\bar{\mu}_{i+j} - \mu_{i+j}| = |\bar{\mu}_{i+j} - \mu| < \alpha \quad (j = 0, 1, ..., p-1).$$

Так как $\alpha>0$ можно выбрать произвольно малым, то отсюда следует, что $\lim_{\epsilon\to 0}\bar{\mu}_{i+j}=\mu_{i+j} \ (j=0,\ 1,\ \dots,\ p-1).$ Аналогичные соотношения имеют место для всех корней $\bar{\mu}_i\colon \lim_{\epsilon\to 0}\bar{\mu}_i=\mu_i \quad (i=1,\ 2,\ \dots,\ k).$

Если умножить уравнение $P_{\epsilon}\left(\mu\right)=0$ на ϵ^{k} и сделать замену $\epsilon\mu=\nu$, то получим:

$$\varepsilon^{k} P_{\varepsilon}(\mu) \equiv \sum_{r=0}^{l} a_{k+r} v^{k+r} + \varepsilon a_{k-1} v^{k-1} + \dots + \varepsilon^{k} a_{0} = 0.$$
(1.31)

Обозначив через v_1, \ldots, v_l отличные от нуля корни уравнения

$$\sqrt{Q_0}(v) \equiv \sum_{r=0} a_{h+r} v^{h+r} = 0,$$
(1.32)

получим, как выше, что уравнение (1.31) имеет корни $\bar{\nu}_1$ (ϵ), . . . , $\bar{\nu}_l$ (ϵ), сколь угодно мало отличающиеся от ν_1 , . . . , ν_l :

$$\overline{\mathsf{v}}_r(\varepsilon) - \mathsf{v}_r = \varepsilon_r', \ \varepsilon_r' \longrightarrow 0 \ \mathrm{пр} \ \varepsilon \longrightarrow 0.$$

Таким образом, уравнение (1.31) имеет корни

$$\overline{\mu_{k+r}}(\varepsilon) = \frac{\overline{\nu_r}(\varepsilon)}{\varepsilon} - \frac{\nu_r + \varepsilon'_r}{\varepsilon} \qquad (r = 1, \ldots, l).$$

При достаточно малом ε конечные корни $\overline{\mu}_i$ $(i=1,\ldots,k)$ не могут равняться корням $\overline{\mu}_{k+r} = \frac{\overline{\nu}_r(\varepsilon)}{\varepsilon}$ $(r=1,\ldots,l)$, и эти k+l корней исчерпывают все корни уравнения $P_{\varepsilon}(\mu) = 0$. Лемма доказана.

§ 2. Обыкновенные дифференциальные уравнения с переменными коэффициентами. Основной итерационный процесс

1. В предыдущем параграфе мы пришли к асимптотическим представлениям (1.16) и (1.28') решений задачи $A_{\rm s}$ в случае ее регулярного вырождения. Эти представления вытекали из формул (1.4) и (1.20), с помощью которых явно выражались решения как вырожденной задачи $A_{\rm o}$, так и невырожденной задачи $A_{\rm s}$. Такие представления имеют место во многих задачах, связанных с соответствующим обобщением понятия «регулярного вырождения».

При отсутствии явных выражений для решений задач A_{ϵ} и A_{0} мы будем пользоваться некоторыми рекуррентными процессами. Мы опишем эти процессы на примере обыкновенных дифференциальных уравнений с переменными коэффициентами и перенесем их на случай уравнений в частных производных.

Определим теперь линейные операторы L_{ϵ} и L_{κ} действующие на достаточно гладкие функции $u\left(x\right)$ переменного x, определенные на отрезке $0\leqslant x\leqslant 1$:

$$I_{ku} \equiv \sum_{i=0}^{k} a_{i}(x) \frac{d^{i}u}{dx^{i}}, \ a_{k}(x) \neq 0 \text{ при } x \in [0, 1],$$
 (2.1)

$$L_{\varepsilon}u \equiv L_{\kappa}u + \sum_{r=1}^{l} \varepsilon^{r} a_{k+r}(x) \frac{d^{k+r}u}{dx^{k+r}}, \quad \varepsilon > 0, \quad a_{k+r}(x) \neq 0 \quad \text{при} \quad x \in [0, 1].$$
 (2.2)

Будем считать коэффициенты $a_j(x)$ $(j=0,1,\ldots,k+l)$ достаточное число раз дифференцируемыми 1). Разложения этих коэффициентов в окрестностях точек x=0 и x=1 с остаточным членом (N+1)-го порядка дают нам:

$$a_{j}(x) = a_{j0} + \sum_{s=1}^{N} a_{j,s,0} x^{s} + a_{j,N+1,0}(x) x^{N+1}$$
 (2.3)

¹⁾ Легко подсчитать, наличие скольких производных у коэффициентов $a_j(x)$ достаточно для проведения нижеследующих выкладок.

и, если положить $x_1 = 1 - x$,

$$a_{j}(x_{1}) = a_{j1} + \sum_{s=1}^{N} a_{j, s, 1} x_{1}^{s} + a_{j, N+1, 1}(x_{1}) x_{1}^{N+1}.$$
 (2.3')

Здесь $a_{i0} = a_i(x)|_{x=0}$, $a_{i1} = a_i(x)|_{x=1}$.

 ${f 3}$ адача A_0 заключается в рещении уравнения

$$L_{\mathbf{X}} = h(\mathbf{X}) \tag{2.4}$$

при граничных условиях

$$\frac{d^{i}w}{dx^{i}}\Big|_{x=0} = 0 \quad (i = 0, 1, \dots, k_{1} - 1), \tag{2.5}$$

$$\frac{d^{i}w}{dx^{i}}\Big|_{x=0} = 0 \quad (i = 0, 1, \dots, k_{1} - 1), \tag{2.5}$$

$$\frac{d^{i}w}{dx^{j}}\Big|_{x=1} = 0 \quad (j = 0, 1, \dots, k_{2} - 1; k_{2} = k - k_{1}).$$

Задача А заключается в решении уравнения

$$L_{\varepsilon}u_{\varepsilon} = h\left(x\right) \tag{2.6}$$

при граничных условиях (2.5), (2.5') и дополнительных условиях

$$\frac{d^{k_1+r}u_{\varepsilon}}{dx^{k_1+r}}\bigg|_{x=0} = 0 \quad (r=0, 1, \dots, l_1-1), \tag{2.7}$$

$$\frac{d^{k_2+s}u_{\varepsilon}}{dx^{k_2+s}}\bigg|_{x=1} = 0 \quad (s=0, 1, \dots, l_2-1; \ l_2=l-l_1). \tag{2.7'}$$

Можно было бы граничные условия взять неоднородными, но этот случай обычными методами свелся бы к случаю однородных условий.

Функцию $h\left(x\right)$ будем считеть достаточное число раз дифференцируемой. Мы считаем задачу $A_{\scriptscriptstyle 0}$ разрешимой, т. е. предполагаем что нуль не является собственным значением оператора $L_{\rm K}$ при граничных условиях (2.5), (2.5'). Будем считать задачи $\widehat{A}_{\rm K}$ при достаточно малых ϵ разрешимыми, не входя в разбор вопросов о связи разрешимости задач $A_{\scriptscriptstyle 0}$ и $A_{\scriptscriptstyle z}$, как это было сделано в § 1.

Поскольку функция v_{ϵ} в разложении (1.16) — типа погранслоя, т. е. заметно отличается от нуля лишь в окрестностях граничных точек $x\!=\!0$ и x=1, то естественно, что при определении аналогичной функции в нашем случае мы можем в первом приближении считать в уравнении (2.6) коэффициенты $a_{i}(x)$ постоянными, равными соответственно $a_{i0}=a_{i}(0)$ в окрестности точки x=0 и $a_{j1}=a_{j}$ (1) в окрестности точки x=1. Фигурировавшее в предыдущем параграфе дополнительное характеристическое уравнение в точках x=0 и x=1 вводится и в нашем случае, именно это уравнение в точке x = 0:

$$Q_0(\lambda) = \sum_{r=0}^{l_f} a_{h+r,0} \lambda^r = 0, \tag{2.8}$$

в точке x = 1:

$$Q_1(\mu) = \sum_{s=0}^{l_2} (-1)^{k+s} a_{k_{\varsigma,s,1}} \mu^s = 0.$$
 (2.8')

Мы перенесем на наш случай и определение регулярности вырождения: вырождение задачи A_{ϵ} в задачу A_{0} — регулярное, если число корней (с отрицательной вещественной частью) характеристических уравнений (2.8) (в точке x=0) и (2.8') (в точке x=1) совпадает соответственно с l_1 и l_2 , m. е. с числом граничных условий (2.7) и (2.7') в этих точках, выпадающих при переходе от A_{ε} к A_0 . Смысл регулярности вырождения состоит в том, что функции типа погранслоя в окрестности граничных точек, аналогичные функциям v_0 , v_1 , ... в формуле (1.28'), которые мы будем последовательно строить, имеют столько степеней свободы, сколько невязок в выполнении граничных условий (2.7), (2.7') они должны компенсировать.

Оператор L_{ϵ} представим в виде (2.2) как многочлен от ϵ . Мы приведем другое его представление в окрестности точки x=0. Именно, введем новую переменную $t=\frac{x}{\epsilon}$, $x=\epsilon t$. Тогда формула (2.3) запишется в виде:

$$a_{j}(x) = a_{j0} + \sum_{s=1}^{N} a_{j, s, 0} \epsilon^{s} t^{s} + \epsilon^{N+1} a_{j, N+1, 0}(x) t^{N+1}.$$

Для j < k достаточно представить $a_{j}(x)$ в виде

$$a_{j}(x) = a_{j0} + \sum_{s=1}^{N+j-k} a_{j, s, 0} \epsilon^{s} t^{s} + \epsilon^{N+1+j-k} a_{j, N+1+j-k, 0}(x) t^{N+1+j-k}. \quad (2.3'')$$

Далее, $\frac{d}{dx} = \frac{1}{\varepsilon} \frac{d}{dt}$, $\frac{d^j}{dx^j} = \varepsilon^{-j} \frac{d^j}{dt^j}$. Значит,

$$\epsilon^{k} L_{\epsilon} u = \sum_{j=0}^{k-1} \epsilon^{k} a_{j}(x) \frac{d^{j} u}{dx^{j}} + \sum_{r=0}^{l} \epsilon^{k+r} a_{k+r}(x) \frac{d^{k+r} u}{dx^{k+r}} = \\
= \sum_{j=0}^{k-1} \epsilon^{k-j} a_{j}(x) \frac{d^{j} u}{dt^{j}} + \sum_{r=0}^{l} a_{k+r}(x) \frac{d^{k+r} u}{dt^{k+r}}.$$

Отсюда в силу (2.3) (при $j \ge k$) и (2.3") (при j < k), объединяя члены при одинаковых степенях ϵ , получаем:

$$\varepsilon^{h} L_{\epsilon} u = M_{0} u + \sum_{i=1}^{N} \varepsilon^{i} R_{j} u + \varepsilon^{N+1} R_{N+1} u.$$
(2.9)

Здесь

$$M_0 u = \sum_{r=0}^{l} a_{k+r, 0} \frac{d^{k+r} u}{dt^{k+r}}$$

- линейный дифференциальный оператор с постоянными коэффициентами;

$$R_{\underline{1}}u = \sum_{r=0}^{l} t \dot{a}_{h+r,\,\underline{1},\,0} \frac{d^{h+r}u}{dt^{h+r}} + a_{h-1,\,0} \frac{d^{h-1}u}{dt^{h-1}} ,$$

и, вообще, при $1 \le i \le N$, $R_i u$ есть линейный дифференциальный оператор с коэффициентами — степенями t не выше i; R_{N+1} есть линейный дифференциальный оператор, каждый из коэффициентов которого является произведением ограниченной функции (типа a_i , N+1, 0 (x)) на степень x (не выше x).

Аналогичное расщепление оператора L_{ϵ} можно произвести в окрестности точки x=1 (т. е. $x_1=1-x=0$), с использованием замены переменных

 $t_1 = \frac{x_1}{\varepsilon} = \frac{1-x}{\varepsilon}$ и разложений (2.3'):

$$\varepsilon^k L_{\varepsilon} u = M_1 u + \sum_{j=1}^{N+1} \varepsilon^j R_{j1} u,$$
(2.10)

$$M_1 u = \sum_{r=0}^{l} (-1)^{h+r} a_{h+r, 1} \frac{d^{h+r} u}{dt_1^{h+r}}, \qquad (2.10')$$

 R_{i1} — операторы, аналогичные соответствующим операторам R_i , $1 \le i \le N+1$. Главными частями оператора $L_{\varepsilon}u$ в окрестности точек 0 и 1 будут соответственно операторы $\varepsilon^{-k}M_0$, $\varepsilon^{-k}M_1$, т. е. линейные дифференциальные операторы с постоянными коэффициентами. Для дифференциальных уравнений

$$M_0 u \equiv \sum_{r=0}^{l} a_{k+r,0} \frac{d^{k+l} u}{dt^{k+r}} = 0,$$
 (2.11)

$$M_1 u \equiv (-1)^k \sum_{r=0}^l (-1)^r a_{k+r,1} \frac{d^{k+r} u}{dt_1^{k+r}} = 0$$
 (2.11')

характеристические уравнения (в силу (2.8) и (2.8')) запишутся соответственно в виде

$$\lambda^h Q_0(\lambda) = 0, \tag{2.12}$$

$$\mu^{h}Q_{1}(\mu) = 0. \tag{2.12'}$$

Корни этих уравнений, отличные от нуля, совпадают с корнями уравнений (2.8) и (2.8').

Мы опишем рекуррентный процесс, дающий асимптотическое представление вида (1.28') решения u_{ε} задачи A_{ε} . Мы его опишем сначала для случая, когда задачи A_{0} и A_{ε} суть задачи Коши — все k условий задачи A_{0} и l дополнительных условий задачи A_{ε} задани в точке x=0, т. е. когда в (2.5) $k_{1}=k$ и в (2.7) $l_{1}=l$; $k_{2}=l_{2}=0$, т. е. условия (2.5') и (2.7') отсутствуют.

Решение уравнения $L_{\varepsilon}u_{\varepsilon}=h$ при условиях (2.5) и (2.7) $(k_1=k,\ l_1=l)$ можно представить как сумму одного из решений \overline{w} уравнения

$$L_{\varepsilon}\overline{w} = h \tag{2.13}$$

и решения однородного уравнения

$$\bar{L_{\rm e}v} = 0 \tag{2.13'}$$

такого, что $\overline{w} + \overline{v}$ удовлетворяет граничным условиям (2.5), (2.7).

В первом приближении 1) уравнение (2.13) заменяется уравнением (2.4)

$$L_{\mathbf{k}}^{\mathbf{w}} = h,$$

и если потребовать от w выполнения граничных условий (2.5), получим: $w=w_0$, где w_0 — решение задачи A_0 .

Но для w_0 не выполнены граничные условия (2.7).

¹⁾ Если решение \overline{w} искать в виде $\overline{w} = w + \varepsilon w_1 + \dots$

В качестве первого приближения к решению \overline{v} уравнения (2.13') возьмем решение уравнения (2.11): $M_0v_0=0$, потребовав, чтобы v_0 компенсировало невязки для w_0 в выполнении условий (2.7), т. е. чтобы

$$\frac{d^{k+r}(w_0+v_0)}{dx^{k+r}}\bigg|_{x=0}=0 \quad (r=0,\ 1,\ \ldots,\ l-1)$$

или чтобы имели место условия:

$$\frac{d^{h+r}v_0}{dx^{h+r}}\bigg|_{x=0} = -\frac{d^{h+r}w_0}{dx^{h+r}}\bigg|_{x=0} \quad (r=0, \ldots, l-1). \tag{2.14}$$

При этом естественно потребовать, чтобы это решение имело характер погранслоя.

Требование регулярности вырождения означает в нашем случае, что дополнительное характеристическое уравнение (2.8) имеет ровно $l=l_1$ корней: $-\lambda_1, \ldots, -\lambda_l$, с отрицательными вещественными частями. Числа $-\lambda_i$ являются корнями характеристического уравнения (2.12) для дифференциального уравнения (2.11). Предположим, как мы это делали выше, для простоты, что числа $-\lambda_i$ попарно различные. Каждому из них отвечает частное решение

$$v = \exp\left(-\lambda_i t\right) = \exp\left(-\frac{\lambda_i x}{\varepsilon}\right)$$

уравнения (2.11). Требование, чтобы решение уравнения (2.11) имело характер погранслоя в окрестности точки x=0, эквивалентно в нашем случае требованию

$$v|_{t=\infty}=0.$$

Общим решением типа погранслоя уравнения (2.11) будет:

$$\sum_{i=1}^{l} c_i \exp\left(-\lambda_i t\right) = \sum_{i=1}^{l} c_i \exp\left(-\frac{\lambda_i x}{\varepsilon}\right). \tag{2.15}$$

Оно содержит столько же произвольных постоянных c_i , сколько граничных условий (2.7) задачи A_{ϵ} выпадает при переходе к вырожденной задаче A_0 . Мы будем искать решение уравнения (2.11) типа погранслоя k-го порядка в виде

$$v_0 - \varepsilon^k \overline{v_0} - \varepsilon^k \sum_{i=1}^l c_i \exp\left(-\lambda_i t\right) = \varepsilon^k \sum_{i=1}^l c_i \exp\left(-\frac{\lambda_i x}{\varepsilon}\right)$$
 (2.15')

так, чтобы

$$w_0 + v_0 = w_0 + \varepsilon^h \overline{v_0}$$

удовлетворяло условиям (2.7). Получаем l условий (2.14):

$$\frac{d^{k+r}}{dx^{k+r}}(w_0 + \varepsilon^k \overline{v_0}) \Big|_{x=0} = 0 \quad (r = 0, 1, \dots, l-1),$$

т. е.

$$\left.\frac{d^{k+r}\overline{v_0}}{dx^{k+r}}\right|_{x=0} = -\varepsilon^{-k} \frac{d^{k+r}w_0}{dx^{k+r}}\bigg|_{x=0}$$

 $[\]bar{v}$) Если это решение \bar{v} искать в виде $\bar{v} = v_0 + \varepsilon v_1 + \ldots$

или

$$\frac{d^{k+r}\overline{v_0}}{dt^{k+r}}\bigg|_{t=0} = \varepsilon^{k+r} \frac{d^{k+r}\overline{v_0}}{dx^{k+r}}\bigg|_{x=0} = -\varepsilon^r \frac{d^{k+r}w_0}{dx^{k+r}}\bigg|_{x=0} \quad (r=0, 1, \ldots, l-1). \quad (2.16)$$

Подставляя в (2.16) $\overrightarrow{v}_0 = \sum_{i=1}^{l} c_i \exp{(-\lambda_i t)}$, получаем систему l линейных уравнений относительно l неизвестных c_i $(i=1,\ldots,l)$:

$$\sum_{i=1}^{l} (-\lambda_i)^{k+r} c_i = -\varepsilon^r \frac{d^{k+r} w_0}{dx^{k+r}} \bigg|_{x=0} (r=0, 1, \dots, l-1).$$
 (2.17)

Детерминант этой системы (типа Вандермонда) при сделанных нами предположениях о попарном неравенстве чисел λ_i отличен от нуля. Отсюда находим решения c_i системы (2.17). При $\varepsilon=0$ эта система переходит в систему

$$\sum_{i=1}^{l} (-\lambda_{i})^{k} c_{i0} = -\frac{d^{k} w_{0}}{dx^{k}} \Big|_{x=0},$$

$$\sum_{i=1}^{l} (-\lambda_{i})^{k+s} c_{i0} = 0 \quad (s=1, \ldots, l-1).$$
(2.18)

Определяемые из (2.17) числа c_i отличаются от определяемых из (2.18) чисел c_{i0} на величину порядка $O(\varepsilon)$: $c_i = c_{i0} + O(\varepsilon)$, точнее $c_i = c_{i0} + c_$

Сумма $w_0 + v_0 = w_0 + \varepsilon^k \overline{v_0}$ удовлетворяет граничным условиям (2.7), но v_0 , а значит и $w_0 + v_0$, уже не удовлетворяет условиям (2.5). Для того чтобы компенсировать невязку в выполнении этих условий, введем функцию

$$\varepsilon \alpha_0 = -\varepsilon^k \sum_{i=1}^l c_i \left[1 + (-\lambda_i t) + \dots + \frac{1}{(k-1)!} (-\lambda_i t)^{k-1} \right] = \\
= -\varepsilon \sum_{i=1}^l c_i \left[\varepsilon^{k-1} - \varepsilon^{k-2} \lambda_i x + \dots + \frac{1}{(k-1)!} (-\lambda_i x)^{k-1} \right].$$

 a_0 есть многочлен степени меньше k от x (или t); поэтому условия (2.7) для него автоматически выполняются. С другой стороны, для

$$v_0 + \epsilon \alpha_0 = \epsilon^k \sum_{i=1}^l c_i \left[\exp(-\lambda_i t) - \sum_{s=0}^{k-1} \frac{(-\lambda_i t)^s}{s!} \right]$$

выполняются k условий (2.5). Значит, сумма

$$w_0 + v_0 + \varepsilon \alpha_0$$

удовлетворяет всем k+l условиям (2.5), (2.7).

Построим следующие приближения к решению u_{ϵ} задачи A_{ϵ} , исходя из найденного приближения.

Ищем их в виде

$$u_{\varepsilon} = (w_0 + \varepsilon w_1 + \dots + \varepsilon^m w_m) + (v_0 + \varepsilon v_1 + \dots + \varepsilon^N v_N) + \\ + \varepsilon (a_0 + \varepsilon a_1 + \dots + \varepsilon^N a_N) + z_m, \quad v_j = \varepsilon^k \bar{v_j},$$

где z_m — невязка. Имеем в силу (2.2) и (2.9)

$$h = L_{\varepsilon}u_{\varepsilon} \equiv \{ \left(L_{\mathbf{K}} + \sum_{s=1}^{l} \varepsilon^{s} L_{h+s} \right) \left[\left(w_{0} + \sum_{j=1}^{m} \varepsilon^{j} w_{j} \right) + \varepsilon \left(\alpha_{0} + \sum_{j=1}^{N} \varepsilon^{j} \alpha_{j} \right) \right] \} +$$

$$+ \left\{ \varepsilon^{-h} \left(M_{0} + \sum_{s=1}^{N+1} \varepsilon^{s} R_{s} \right) \left(v_{0} + \sum_{r=1}^{N} \varepsilon^{r} v_{r} \right) \right\} + L_{\varepsilon} Z_{m}; \quad (2.19)$$

вторую фигурную скобку, полагая $v_r = \varepsilon^h \overline{v_r}$, можно записать в виде

$$\left(M_0 + \sum_{s=1}^{N+1} \varepsilon^s R_s\right) \left(\overline{v}_0 + \sum_{r=1}^{N} \varepsilon^r \overline{v}_r\right), \qquad (2.20)$$

где w_0 , v_0 и α_0 уже нам известны, причем $L_{\bullet}w_0=h$, $M_0v_0=0$ и $w_0+\epsilon^k\overline{v_0}+$ $+\epsilon\alpha_0$ удовлетворяет всем граничным условиям задачи A_ϵ .

Предположим, что мы уже построили $w_j,\ v_j,\ \alpha_j$ для $0\leqslant j\leqslant i-1$, и что для них выполнены следующие гипотезы индукции:

- 1) w_j и α_j ограниченные на [0, 1] функции вместе со своими производными до определенного порядка.
- 2) $v_j = \varepsilon^k \bar{v}_j$ носит характер погранслоя k-го порядка в окрестности точ-ки x = 0, точнее:

$$v_j = \varepsilon^k \overline{v_j} = \varepsilon^k \sum_{i=1}^l c_{ij} \exp\left(-\lambda_i t\right), \tag{2.21}$$

где c_{ij} — многочлены относительно t.

3) $w_j + \varepsilon a_j + v_j$ удовлетворяет всем граничным условиям задачи A_ε , т. е. условиям (2.5) и (2.7).

Объединим в первой фигурной скобке (2.19) все члены при ε^i (i>0) и приравняем их нулю. Получим

$$L_{\mathbf{w}} w_{i} = -\sum_{s=1}^{[i]} L_{k+s} w_{i-s} - \sum_{p=0}^{[i-1]} L_{k+p} \alpha_{i-p-1}.$$
 (2.22)

Здесь [i] означает $\min{(i,l)}$. Берем решение w_i этого уравнения, удовлетворяющее граничным условиям (2.5) задачи A_0 . Аналогично, объединяя во второй фигурной скобке члены при ε^i и приравнивая их нулю, получим:

$$M_{c}\overline{v}_{i} = -\sum_{s=1}^{N} R_{s}\overline{v}_{i-s}.$$
 (2.23)

В качестве $\overline{v_i}$ возьмем то решение уравнения (2.23), которое: во-первых, есть функция типа погранслоя в окрестности точки x=0 и, значит, $v_i = \varepsilon^k \overline{v_i}$ — погранслой k-го порядка, во-вторых, $v_i + w_i$ удовлетворяет условиям (2.7), т. е. v_i удовлетворяет l условиям, аналогичным (2.16):

$$\frac{d^{k+r}\overline{v}_i}{dt^{k+l}}\bigg|_{t=0} = -\varepsilon^r \frac{d^{k+r}w_i}{dx^{k+r}}\bigg|_{x=0} \quad (r=0, \ldots, l-1). \tag{2.24}$$

Такое решение \overline{v}_i можно найти в виде $\overline{v}_i = p_i(t) + q_i(t)$, где $p_i(t)$ — некоторое частное решение неоднородного уравнения (2.23); $q_i(t)$ есть решение

соответствующего однородного уравнения (2.11). Напомним, что в силу условия 2) (см. (2.21)) все функции v_{i-s} (s>0) имеют форму линейной комбинации от $\exp{(-\lambda_j t)}$ с коэффициентами — многочленами по t. В операторах R_s ($s=1,\ldots,i$) коэффициенты при дифференциальных операторах $\frac{d^j}{dt^j}$ — тоже многочлены по t. Поэтому правая часть (2.23) имеет вид: $\sum B_j \exp{(-\lambda_j t)}$, где $B_j = B_j$ (t) — тоже многочлен от t. Мы можем найти решение p_i (t) уравнения (2.23) также в форме $\sum C_j(t) \exp{(-\lambda_j t)}$, где $C_j(t)$ — многочлен от t степени, на единицу большей чем $B_j(t)$, который отыскиваєтся методом подбора коэффициентов. Далее, $q_i(t)$ находится как решение уравнения (2.11) при граничных условиях

$$\frac{d^{k+r}q_i}{dt^{k+r}}\Big|_{t=0} = -\varepsilon^r \frac{d^{k+r}w_i}{dx^{k+r}}\Big|_{x=0} - \frac{d^{k+r}p_i}{dt^{k+r}}\Big|_{t=0}$$
 (2.24')

с тем, чтобы $v_i = p_i + q_i$ удовлетворяла условиям (2.24). Функция q_i имеет вид (2.15), а значит, $v_i = \varepsilon^k \overline{v_i} = \varepsilon^k (p_i + q_i)$ имеет вид (2.21).

Найдя v_i , строим теперь функцию $\epsilon \alpha_i$ в виде многочлена (k-1)-й степени по t (так же, как мы выше строили $\epsilon \alpha_0$) с тем, чтобы функция

$$w_i + v_i + \varepsilon \alpha_i = w_i + \varepsilon^{k} \overline{v_i} + \varepsilon \alpha_i$$

удовлетворяла всем условиям (2.5) и (2.7).

Итак, наш рекуррентный процесс сводится к последовательному решению уравнений k-го порядка (2.22), отличающихся лишь правыми частями от вырожденного уравнения (2.4), и к решению уравнений (2.23) с постоянными коэффициентами. При этом процессе сохраняются все предположения индукции. Мы можем предположить в нашем случае N=m. Обрывая процесс на m-ом шаге, мы добьемся, что в формуле (2.20) погасятся все члены при ε^s для $s=0,1,\ldots,m$, как в первой, так и во второй фигурных скобках. Следовательно, в нашем случае будет:

$$h = L_{\varepsilon} u_{\varepsilon} = h + \varepsilon^{m+1} g_m + L_{\varepsilon} z_m, \tag{2.25}$$

где $\varepsilon^{m+1}g_m$ есть сумма конечного числа членов при $\varepsilon^{m+s},\ s\geqslant 1.$ Итак,

$$L_{\varepsilon} z_m = -\varepsilon^{m+1} g_m. \tag{2.26}$$

Отсюда нам надо вывести, что в известном смысле z_m мало и имеет порядок малости z^{m+1} Для того чтобы говорить о «малости» некоторой функции, обычно рассматривают ее как элемент некоторого банахова пространства B_2 , естественно связанного с задачей, и тогда малость функции z_m означает малость ее нормы $\|z_m\|_2$ в B_2 . Результаты о малости $\|z_m\|_2$ и о ее порядке вытекают обычно из известных оценок для норм в B_2 решений краевых задач через нормы правых частей $\|z^{m+1}g_m\|_1$ в некотором, быть может другом, банаховом пространстве B_1 . Эти оценки, в применении к нашему случаю, как правило, имеют вид $\|z_m\|_2 \leqslant K_0 \|z^{m+1}g_m\|_1$. Допустим, что каждый член при z^{m+s} имеет ограниченную норму в некотором банаховом пространстве B_1 ; значит, $\|g_m\|_1 = O(1)$, $\|z^{m+1}g_m\|_1 = O(1)$, далее, так как u_z и все суммы $(w_i + v_i + z a_i)$ $(i = 0, 1, \ldots, m)$ удовлетворяют граничным условиям (2.5), (2.7) задачи A_z , то этим условиям удовлез успехи матем. наук, т. XII, вып. 5

творяет и z_m . Мы сделаем гипотезу о равномерной разрешимости задачи A_{ϵ} относительно ϵ , т. е. предположим, что задача A_{ϵ} : $L_{\epsilon}y_{\epsilon}=g$, при условиях (2.5), (2.7) разрешима для любого достаточно малого ϵ и любого $g \in B_1$, решение ее единственно (для задачи Коши это удовлетворяется автоматически) и для всех достаточно малых ϵ

$$\parallel y_{\varepsilon} \parallel_{2} \leqslant K_{\mathbf{0}} \parallel g \parallel_{1}, \tag{2.27}$$

где K_0 — константа, не зависящая от ϵ_0^{-1}). Тогда из (2.26) следует:

 $z_m = \varepsilon^{m+1} \overline{z}_m$, $||\overline{z}_m||_2 = O$ (1). Мы приходим к разложению

$$u_{\varepsilon} = w_0 + \sum_{i=1}^m \varepsilon^i \left(w_i + \alpha_{i-1} \right) + \sum_{s=0}^m \varepsilon^s v_s + \varepsilon^{m+1} \widetilde{z}_m, \tag{2.28}$$

где $\widetilde{z}_m = z_m + \alpha_m$. Здесь w_0 — решение задачи A_0 . w_i и α_i — функции, равномерно ограниченные на $[0,\ 1]$ вместе со своими производными до определенного порядка, v_s — функции типа погранслоя k-го порядка, $\|\widetilde{z}_m\|_2 = O(1)$.

Перейдем тенерь к более общему случаю, когда граничные условия для вырожденной задачи $A_{\rm o}$ и невырожденной задачи $A_{\rm e}$ задаются и в точке x=0 и в точке x=1 (т. е. наряду с условиями (2.5) и (2.7) фигурируют условия (2.5') и (2.7')). Пограничный слой возникает не только в окрестности точки x=0, но и в окрестности точки x=1. Мы заранее предположим, что выполняются три условия:

- 1) Задача A_0 разрешима при любом $h \in B_1$ (это значит: нуль не является собственным значением оператора L_k при условиях (2.5) и (2.5')).
- 2) Вырождение задачи $A_{\mathfrak{s}}$ в задачу $A_{\mathfrak{o}}$ регулярное, т. е. уравнение (2.8) и меет l_1 корней $-\lambda_1$, $-\lambda_2$, ..., $-\lambda_{l_1}$, а уравнение (2.8') l_2 корней $-\nu_1$, $-\nu_2$, ..., $-\nu_{l_2}$ с отрицательными вещественными частями (что совпадает с числом условий (2.7) и (2.7') в точках x=0 и x=1).
 - 3) Задача A_{ϵ} равномерно разрешима (т. е. выполнено (2.27)) ²).

Мы оставляем сейчас в стороне вопрос, вытекает ли условие 3) из условий 1) и 2) (как это имело место для задач $\S 1)^3$).

Проведем итерационный процесс, описанный выше и приводящий к разложению (2.28), в нашем случае. Функции w_0 (решение вырожденной задачи), w_1, \ldots, w_m определяются так же, как выше.

Функции v_i $(i=0,\ 1,\ \dots,\ N)$ — типа погранслоя мы должны строить отдельно в окрестности точки x=0 и в окрестности точки x=1.

 $^{^{1}}$) Как мы увидим в следующем нараграфе, норму $\|\cdot\|_{2}$ естественно брать зависящей от ε . В качестве пространств B_{1} и B_{2} в настоящей работе мы чаще всего будем брать пространства $W_{2}^{(s)}$ или пространства C. Подробнее об этом см. §§ 3, 4, 7. У потребление обычной гильбертовой метрики не всегда целесообразно, так как в этой метрике погранслой имеет норму, бесконечно малую с ε (см. § 5).

²) Достаточные условия равномерной разрешимости приводятся в следующем параграфе.

³) Недавно, студент МГУ А. Б. Шабат доказал, что при весьма общих предположениях условие 3) в самом деле является следствием условий 1) и 2).

Функция $v_{00} = \varepsilon^{k_1} \bar{v}_{00}$ типа погранслоя в окрестности точки x=0 строится так же, как выше, путем решения уравнения (2.23) при i=0, только l условий (2.24) заменяются l_1 условиями

$$\frac{d^{k_1+r}\bar{v}_{00}}{dt^{k_1+r}}\bigg|_{t=0} = \varepsilon^{k_1+r} \frac{d^{k_1+r}\bar{v}_{00}}{dx^{k_1+r}}\bigg|_{x=0} = -\varepsilon^r \frac{d^{k_1+r}w_0}{dx^{k_1+r}}\bigg|_{x=0} \qquad (r=0, 1, \ldots, l_1-1).$$

Функция $v_{00} = \varepsilon^{k_1} v_{00}$ имеет характер погранслоя k_1 -го порядка вида, аналогичного (2.15'):

$$v_{00} = \varepsilon^{k_1} \overline{v_{00}} = \varepsilon^{k_1} \sum_{i=1}^{l_1} c_i \exp\left(-\lambda_i t\right) = \varepsilon^{k_1} \sum_{i=1}^{l_1} c_i \exp\left(-\lambda_i \frac{x}{\varepsilon}\right).$$

Функции $v_{i0} = \varepsilon^{h_1} \overline{v_{\phi 0}}$ $(i=1,\ 2,\ \dots)$ определяются последовательно из уравнений (2.23) с условиями типа (2.24):

$$\frac{d^{k_1+r_{v_{i0}}}}{dt^{k_1+r}}\bigg|_{t=0} = -\varepsilon^r \frac{d^{k_1+r_{w_i}}}{dx^{k_1+r}}\bigg|_{x=0} \qquad (r=0, 1, \dots, l_1-1); \qquad (2.29)$$

 v_{i0} является погранслоем k_1 -го порядка: $v_{i0} = \varepsilon^{k_1} \overline{v_{i0}} = \varepsilon^{k_1} \sum_{j=1}^{l_1} c_{ij} \exp \left(-\lambda_j t\right) =$

= $\epsilon^{k_1} \sum_{j=1}^{l_1} c_{ij} \exp\left(-\lambda_j \frac{x}{\epsilon}\right)$, где c_{ij} — многочлены от $t=\frac{x}{\epsilon}$. Аналогично строятся и функции $v_{01},\ v_{11},\ \dots,\ v_{j1},\ \dots$ типа погранслоя k_2 -го порядка в окрестности точки x=1.

Мы исходим из разложений (2.3') коэффициентов (вместо (2.3)). Вместо переменного $t=\frac{x}{\varepsilon}$ мы вводим в окрестности точки x=1 переменное $t_1=\frac{x_1}{\varepsilon}$, где $x_1=1-x$. Разложению (2.9) оператора L_{ε} в окрестности точки x=0 отвечает следующее разложение в окрестности x=1 ($x_1=0$):

$$\varepsilon^k L_{\varepsilon} u = M_1 u + \sum_{j=1}^N \varepsilon^j R_{j1} u + \varepsilon^{N+1} R_{N+1, 1} u.$$

Здесь $M_1 u$ — дифференциальный оператор с постоянными коэффициентами

$$M_1 u \equiv \sum_{r=0}^{l} (-1)^{k+r} a_{k+r, 1} \frac{d^{k+r} u}{dt_1^{k+r}}$$
.

Ему отвечает характеристический многочлен (см. (2.8'))

$$\sum_{r=0}^{l} (-1)^{k+r} a_{k+r, 1} \mu^{k+r} = \mu^{k} Q_{1}(\mu).$$

Для уравнения с постоянными коэффициентами

$$M_1 \overline{v_{01}} = 0 \tag{2.30}$$

характеристическое уравнение $\mu^k Q_1(\mu) = 0$ имеет, по предположению, l_2 корней: $-\nu_1, \ldots, -\nu_{l_2}$, с отрицательными вещественными частями. Каждому

из них отвечает решение уравнения (2.30) типа погранслоя: $\exp\left(-\nu_{j}t_{1}\right) = \exp\left(-\nu_{j}\frac{x_{1}}{\varepsilon}\right) = \exp\left(-\nu_{j}\frac{1-x}{\varepsilon}\right)$. Граничным условиям (2.16) отвечают граничные условия

$$\frac{d^{h_2+r_{\overline{v_{01}}}}}{dt_1^{h_2+r}}\Big|_{t_1=0} = (-1)^{h_2+r_2} \varepsilon^{h_2+r} \frac{d^{h_2+r_{\overline{v_{01}}}}}{dx^{h_2+r}}\Big|_{x=1} =$$

$$= (-1)^{h_2+r+1} \varepsilon^r \frac{d^{h_2+r} w_0}{dx^{h_2+r}}\Big|_{x=1} \qquad (r=0, 1, ..., l_2-1). \tag{2.31}$$

Из этих l_2 условий мы находим l_2 коэффициентов d_{0i} в представлении

$$v_{01} = \varepsilon^{h_2} \overline{v_{01}} = \varepsilon^{h_2} \sum_{j=1}^{l_2} d_{0j} \exp(-v_j t_1);$$

 v_{01} есть погранслой k_2 -го порядка в окрестности точки x=1. Затем последовательно находим \overline{v}_{i1} $(i=1,\ldots,N_1)$ из уравнений вида (2.23): $M_1\overline{v}_{i1}=-\sum_{s=1}^i R_{s,1}\overline{v}_{i-s,1}$, условий типа (2.29) и требования, чтобы \overline{v}_{i1} было функцией типа погранслоя в окрестности точки x=1. $v_{i1}=\varepsilon^{k_2}\overline{v}_{i1}$ оказываются функциями типа погранслоя k_2 -го порядка — линейными формами от $\exp{(-v_jt_1)}$ с коэффициентами — многочленами от t_1 .

Далее, α_{i0} $(i=0,\ 1,\ \dots),\ \alpha_{i1}$ $(i=0,\ 1,\ \dots)$ определяются так же, как выше α_i , с тем, чтобы функции $w_i+v_{i0}+\varepsilon\alpha_{i0}$ удовлетворяли k_1+l_1 условиям (2.5) и (2.7) в точке x=0, а $w_i+v_{i1}+\varepsilon\alpha_{i1}-(k_2+l_2)$ условиям (2.5') и (2.7') в точке x=1. Введем теперь сглаживающие функции $\psi(x)$, где $\psi(x)$ — бесконечно дифференцируемая функция, равная 1 при $x\leqslant\frac{4}{3}$ и равная 0 при $x\geqslant\frac{2}{3}$. Тогда

$$\alpha_{j} = \psi(4x) \alpha_{j0} + \psi(4(1-x)) \alpha_{j1}$$
 (2.32)

есть бесконечно дифференцируемая функция, совпадающая с α_{j0} при $x \in \left[0, \frac{1}{12}\right]$ и с α_{j1} при $x \in \left[\frac{14}{12}, 1\right]$. Эти функции α_{j} при j < i входят в уравнение (2.22) для определения w_i . Точно так же мы склеим из v_{j0} и v_{j1} функцию v_{j} : $v_{j} = \psi$ (4x) $v_{j0} + \psi$ (4(1-x)) v_{j1} . Во второй фигурной скобке в правой части (2.19) запишем теперь на отрезке $\left[0, \frac{1}{12}\right]$ выражение

$$\begin{split} \varepsilon^{-k} \left(\boldsymbol{M}_0 + \sum_{s=1}^{N+1} \varepsilon^s \boldsymbol{R}_s \right) \left(\boldsymbol{v}_{00} + \sum_{r=1}^{N} \varepsilon^r \boldsymbol{v}_{r0} \right) = \\ &= \varepsilon^{-(k-k_1)} \left(\boldsymbol{M}_0 + \sum_{s=1}^{N+1} \varepsilon^s \boldsymbol{R}_s \right) \left(\overline{\boldsymbol{v}}_{00} + \sum_{r=1}^{N} \varepsilon^r \overline{\boldsymbol{v}}_{r0} \right). \end{split}$$

Для того чтобы уничтожились все члены при ε^s ($s=0,\ 1,\ \ldots,\ m$), нужно положить $N\geqslant m+k-k_1$. Аналогично, на отрезке $\left[\frac{11}{12},\ 1\right]$ вместо этой

скобки фигурирует выражение

$$\mathbf{e}^{-(h-h_2)}\left(\boldsymbol{M}_1 + \sum_{s=1}^{N+1} \mathbf{e}^s \boldsymbol{R}_{s1}\right) \big(\overline{\boldsymbol{v}}_{01} + \sum_{r=1}^{N} \mathbf{e}^r \overline{\boldsymbol{v}}_{r1}\big).$$

Для того чтобы уничтожились все члены при ε^s ($s=0,\ 1,\ \ldots,\ m$) нужно положить $N \gg m + (k-k_2)$. Мы можем принять

$$N = m + k - \min(k_1, k_2)_i$$

Так как w_i мы определили лишь для $i \le m$, то неоднородные граничные условия (2.29) для i > m ($m < i \le N$) заменяются однородными:

$$\frac{d^{k_1+r}\overline{v_{i_0}}}{dt^{k_1+r}}\bigg|_{t=0}=0 \qquad (r=0,\ 1,\ \ldots,\ l_1-1;\ i=m+1,\ \ldots,\ N).$$

Аналогично, при i>m для определения v_{i1} неоднородные граничные условия в точке x=1 заменяются однородными.

Так же как в прошлый раз, показывается, что на каждом из участков $\left[\ 0, \frac{1}{12}\ \right]$ и $\left[\ \frac{11}{12}, \ 1\ \right]$, где v_i равны соответственно v_{i0} и v_{i1} , полагая

$$z_m = u_{\varepsilon} - \sum_{i=0}^m \varepsilon^i w_i - \sum_{s=0}^N (\varepsilon^s v_s + \varepsilon^{s+1} \alpha_s), \qquad N = m+k - \min(k_1, k_2),$$

имеем:

$$L_{\varepsilon} z_m = O(\varepsilon^{m+1}). \tag{2.33}$$

При $x\geqslant \frac{1}{12}$ все выражения $\exp\left(-\lambda_i\frac{x}{\varepsilon}\right)$ и их производные стремятся к нулю равномерно при $\varepsilon \to 0$ быстрее, чем любая степень ε . Поэтому, так как ϕ ограничена и имеет ограниченые производные, функции $\phi(4x)\exp\left(-\lambda_i\frac{x}{\varepsilon}\right)$ и их производные при $x\geqslant \frac{1}{12}$ также стремятся к нулю быстрее, чем любая степень ε . То же имеет место и для функций $\phi(4(1-x))\exp\left(-\frac{\gamma_i(1-x)}{\varepsilon}\right)$ при $x\leqslant \frac{11}{12}$. Следовательно, при любом i на отрезке $\left[\frac{1}{12},\frac{11}{12}\right]$ $L_\varepsilon v_i = L_\varepsilon\left(\phi(4x)\,v_{i0}\right) + \phi\left(4(1-x)\,v_{i1}\right)$ стремится к нулю равномерно быстрее, чем ε^{m+1} , т. е. оценка (2.33) имеет место на всем отрезке $[0,\ 1]$. Отсюда следует:

$$L_{\mathbf{s}}z_{m}=\mathbf{s}^{m+1}g_{m},\qquad \parallel g_{m}\parallel_{1}=O\left(1\right),$$

и в силу равномерной разрешимости операторов L_{ε} при граничных условиях (2.5), (2.5'), (2.7') $z_m=\varepsilon^{m+1}\bar{z}_m,\ \|\bar{z}_m\|_2=O$ (1).

При окончательной записи асимптотического разложения удобно объединить ограниченные вместе с производными функции \boldsymbol{w}_i и $\boldsymbol{\alpha}_{i-1}$, именно обозначая: $\boldsymbol{\widetilde{w}}_i = \boldsymbol{w}_i + \boldsymbol{\alpha}_{i-1}, \ \boldsymbol{\widetilde{w}}_0 = \boldsymbol{w}_0.$

Перенеся в формуле (2.22) член $L_{h} a_{i-1}$ в левую часть, запишем это уравнение в виде

$$L_{k}\widetilde{w}_{i} = -\sum_{s=1}^{l} L_{h+s}\widetilde{w}_{i-s} \qquad (i = \min(i, l)). \tag{2.34}$$

Так нак w_i удовлетворяет однородным условиям (2.5), (2.5'), а α_{i-1} — соответственным неоднородным условиям, то \widetilde{w}_i удовлетворяет тем же неоднородным условиям (до (k_1-1) -го, соответственно (k_2-1) -го, порядка производных на конце 0, соответственно 1), что и α_{i-1} . Таким образом, \widetilde{w}_i (i>0) можно также определить как решения рекуррентных уравнений (2.34) при соответствующих неоднородных граничных условиях.

Обозначая
$$y_m = \bar{z}_m + \sum_{r=m}^N \varepsilon^{r-m} \alpha_r$$
, приходим к следующей теореме:

Теорема 3. При условиях разрешимости задачи $A_{\rm o}$, равномерной разрешимости задач $A_{\rm e}$ и регулярного вырождения задач $A_{\rm e}$ в задачу $A_{\rm o}$, решение $u_{\rm e}$ задачи $A_{\rm e}$ при достаточно малых $\epsilon>0$ допускает следующее представление:

$$u_{\varepsilon} = w_0 + \sum_{i=1}^m \varepsilon^i \widetilde{w}_i + \sum_{r=0}^N \varepsilon^r v_r + \varepsilon^{m+1} y_m, \qquad N = m + k - \min(k_1, k_2). \quad (2.35)$$

Здесь w_0 — решение задачи A_0 , $\widetilde{w}_i = w_i + a_{i-1}$ — функции, ограниченные (относительно ε) вместе со своими производными на [0, 1], v_r — функции типа погранслоя k_1 -го порядка в окрестности x=0 и k_2 -го порядка в окрестности x=1, $\parallel y_m \parallel_2$ ограничена не зависящей от ε константой.

Заметим, что достаточным условием разрешимости задачи A_0 является позитивность оператора L_k при граничных условиях (2.5), (2.5'):

$$(L_b u, u) \geqslant C(u, u), \qquad C > 0,$$
 (2.36)

где u — любая k раз дифференцируемая функция, удовлетворяющая условиям (2.5), (2.5').

Достаточным условием равномерной разрешимости задачи A_{ϵ} является, например, равномерная позитивность относительно ϵ операторов L_{ϵ} при граничных условиях (2.5), (2.5'), (2.7), (2.7'), т. е. для всех (k+l) раз непрерывно дифференцируемых функций u, удовлетворяющих этим граничным условиям, и всех достаточно малых $\epsilon > 0$

$$(L_{\varepsilon}u, u) \geqslant C_1 \|u\|^2, \qquad C_1 > 0,$$
 (2.36')

где норма $\|\ \|$ берется в соответствующем пространстве B, например $B=W_2^{(p)}.$

Пример. Пусть в задаче A_0 одно из чисел $k_{\rm i}$, например k_2 , равно нулю (задача A_0 есть задача Коши для уравнения порядка $k=k_1$). Задача $A_{\rm s}$ есть граничная задача для уравнения (2.6) (k+l)-го порядка с $k+l_1$ граничными условиями в точке x=0 и l_2 условиями в точке x=1. Так как в точке x=1 нет граничных условий задачи A_0 , то выпадают в разложении (2.32) функции $a_{\rm j1}$, введенные для компенсации граничных условий задачи $A_{\rm s}$ в точке x=1.

 $^{-1}$ В частности, если задача $A_{\rm o}$ есть задача Коши для уравнения 1-го порядка

$$L_1 y \equiv y' + a(x) y = h$$
 $(a > 0)$ (2.37)

при условии y(0)=0, а задача A_{ε} заключается в решении аналога 1-й краевой задачи для уравнения 2-го порядка

$$L_{\varepsilon} y_{\varepsilon} \equiv -\varepsilon y_{\varepsilon}'' + y_{\varepsilon}' + a(x) y_{\varepsilon} = h, \tag{2.38}$$

т. е. у в ищется при условиях

$$y_{\varepsilon}(0)=0, \qquad y_{\varepsilon}(1)=0,$$

то решение y_{ε} задачи A_{ε} допускает асимптотическое представление:

$$y_{\varepsilon} = y_{0}(x) + \sum_{i=1}^{m} \varepsilon^{i} y_{i}(x) + \sum_{r=0}^{m+1} \varepsilon^{r} v_{r}(x) + \varepsilon^{m+1} \overline{z}_{m}(x),$$

где $y_0(x)$ —решение задачи A_0 и $y_i(x)$ получаются последовательно из решений задачи Коши (см. формулы (2.22), (2.5) при k=1), $v_r(x)$ — функции типа погранслоя нулевого порядка, $\|\bar{z}_m\|_2 = O(1)$.

§ 3. Аналоги первой краевой задачи для обыкновенных дифференциальных угавнений четного и нечетного порядков. Критерии регулярности вырождения

В настоящем параграфе мы изучим в случае обыкновенных дифференциальных уравнений аналоги тех краевых задач, которые далее рассматриваются для уравнений в частных производных. Точнее, мы приведем достаточные условия, при которых обыкновенный дифференциальный оператор L_{ϵ} с параметрами при старших производных имеет равномерно позитивную симметрическую часть и равномерно обратим (относительно ϵ , см. ниже). Эти условия обеспечивают разрешимость задачи A_{ϵ} . Далее докажем, что при этих же условиях равномерной позитивности, если естественным образом определить задачу A_{0} для вырожденного оператора L_{0} , имеет место регулярность вырождения задачи A_{ϵ} в задачу A_{0} , т. е. справедливы асимптотические формулы для u_{ϵ} , а разность между u_{ϵ} и $w_{0} + \sum_{i=1}^{m} \epsilon^{i} \widetilde{w}_{i}$ имеет характер пограничного слоя.

1. Пусть на отрезке $0 \leqslant x \leqslant 1$ задан обыкновенный дифференциальный оператор

$$L_{\epsilon}u \equiv \sum_{j=1}^{l} \epsilon^{j} a_{k+j}(x) \frac{d^{k+j}u}{dx^{k+j}} + \sum_{s=1}^{k} a_{s}(x) \frac{d^{s}u}{dx^{s}} + a_{0}(x) u \equiv L_{\epsilon}^{(1)}u + L_{0}u,$$

$$(a_{k+l}(x) \neq 0 \text{ для } 0 \leq x \leq 1),$$
(3.1)

где через $L_{\epsilon}^{(1)}$ мы обозначили сумму членов в (3.1), содержащих в коэффициентах ϵ . Под характеристической формой π_{ϵ} (ξ ; x) оператора L_{ϵ} в точке x будем подразумевать

$$\pi_{\epsilon}(\xi; x) = \sum_{j=0}^{l} \epsilon^{j} a_{k+j}(x) (i\xi)^{k+j}. \tag{3.2}$$

Аналогично определяется характеристическая форма $\pi_{\varepsilon}^{(1)}(\xi;x)$ оператора $L_{\varepsilon}^{(1)}$; $\pi_{\varepsilon}^{(1)}(\xi;x) = \sum_{j=1}^{l} \varepsilon^{j} a_{k+j}(x) (i\xi)^{k+j}$. Определим граничные условия: если k+l=2 (k_1+l_1) — число четное, то граничные условия имеют вид

$$\frac{d^{s}u(x)}{dx^{s}}\Big|_{x=0} = \frac{d^{s}u(x)}{dx^{s}}\Big|_{x=1} = 0 \quad (s=0, 1, ..., k_{1}+l_{1}-1).$$
 (3.3)

Эти условия, одинаковые в обоих концах, являются аналогом в одномерном случае первой краевой задачи для эллиптических уравнений.

В случае, если k+l=2 $(k_1+l_1)+1-$ число нечетное, мы задаем k_1+l_1+1 условие на одном конце и k_1+l_1 условий на другом конце. Именно условимся: если $(-1)^{k_1+l_1}a_{k+l}(x)>0$, то задаем условия в виде

$$\frac{d^{s}u(x)}{dx^{s}}\Big|_{x=0} = 0 \ (s = 0, 1, \dots, k_{1} + l_{1}),$$

$$\frac{d^{r}u(x)}{dx^{r}}\Big|_{x=1} = 0 \ (r = 0, 1, \dots, k_{1} + l_{1} - 1),$$
(3.4)

если $(-1)^{k_1+l_1}a_{k+l}(x)<0$, то задаем условия в виде

$$\frac{d^{s}u(x)}{dx^{s}}\Big|_{x=0} = 0 \quad (s = 0, 1, \dots, k_{1} + l_{1} - 1),
\frac{d^{r}u(x)}{dx^{r}}\Big|_{x=1} = 0 \quad (r = 0, 1, \dots, k_{1} + l_{1}).$$
(3.5)

Эти условия вместе с приведенными ниже обеспечивают позитивность операторов L_{ϵ} для достаточно малых ϵ .

Такая краевая задача является аналогом того, что мы будем называть в дальнейшем первой краевой задачей для «однохарактеристических» уравнений в частных производных нечетного порядка.

Начнем со случая, когда $k=2k_1$ и $l=2l_1$ —числа четные. Ниже мы приведем условия, при которых операторы L_{ϵ} при граничных условиях (3.3) озитивны (точнее, имеют позитивную симметрическую часть), и притом равномерно позитивны, именно

$$(L_{\varepsilon}u, u) \geqslant \alpha^{2} \left[\varepsilon^{2l_{1}} \left\| \frac{d^{k_{1}+l_{1}}u}{dx^{k_{1}+l_{1}}} \right\|^{2} + \left\| \frac{d^{k_{1}}u}{dx^{k_{1}}} \right\|^{2} + \|u\|^{2} \right] = \alpha^{2} \|u\|_{\varepsilon}^{2}, \tag{3.6}$$

где α^2 не зависит от ϵ и от u; через $\|\ \|_{\epsilon}$ мы обозначили сумму норм, стоящих в скобках справа. Из равномерной позитивности (3.6) вытекает разрешимость уравнений

$$L_{\bullet}u = h$$

при граничных условиях (3.3) и любом h из \mathcal{L}_2 . Действительно, число граничных условий совпадает с порядком уравнения, а позитивность тогда обеспечивает единственность и, следовательно, существование решения задачи A_{ϵ} . При этом из (3.6) следует, что для решения u этой задачи

$$||u||_{\varepsilon}^2 \leqslant C ||h||^2, \tag{3.7}$$

где C не зависит от ϵ . Таким образом, из равномерной позитивности следует равномерная разрешимость задач A_{ϵ} (т. е. выполнение (3.7)).

Теорема 4. Если числа $k=2k_1,\ k+l=2\,(k_1+l_1)$ — четные, характеристическая форма оператора $L^{(1)}_{\varepsilon}$ имеет положительную вещественную часть, точнее:

$$\operatorname{Re} \pi_{\varepsilon}^{(1)}(\xi; x) \equiv \sum_{j=1}^{l_1} \varepsilon^{2j} (-1)^{j+h_1} a_{2(h_1+j)}(x) \, \xi^{2(j+h_1)} \geqslant \alpha^2 \left(\sum_{j=1}^{l_1} \varepsilon^{2j} \xi^{2(j+h_1)} \right), \quad (3.8)$$

u, кроме того, оператор L_0 позитивен 1):

$$(L_0 u, u) \geqslant \gamma^2 (||D^{k_1} u||^2 + ||u||^2)$$
 (3.9)

 $\left(D^{i} = \frac{d^{i}}{dx^{i}}\right)$ для любых гладких функций и, удовлетворяющих условиям (3.3), то операторы L_{ϵ} (при граничных условиях (3.3)) равномерно позитивны при достаточно малых ϵ .

G-ducunia

Более того, имеет место «энергетическая» оценка:

$$\sum_{j=1}^{l_1} \varepsilon^{2j} \|D^{k_1+j}u\|^2 + \|D^{k_1}u\|^2 + \|u\|^2 \leqslant \overline{\beta}^2 (L_{\varepsilon}u, u) \leqslant \overline{\beta}_1^2 \|h\|^2, \ h = L_{\varepsilon}u. \quad (3.10)$$

Примечание. Если коэффициенты a_j —постоянные, то достаточным условием равномерной позитивности операторов L_{ϵ} является (во всех случаях) положительность формы: Re $P_{\epsilon}(i\xi)>0$ при $\xi\neq 0$, и $a_0>0$, где $P_{\epsilon}(\lambda)$ —характеристический многочлен всего оператора L_{ϵ} .

Обозначим через $\Lambda_{\varepsilon}u$ часть оператора $L_{\varepsilon}u$, равную сумме членов L_{ε} , с четными порядками производных, в коэффициенты которых входит ε :

$$\Lambda_{\varepsilon} u = \varepsilon^{2l_1} a_{2(h_1+l_1)}(x) \frac{d^{2(h_1+l_1)}u}{dx^{2(h_1+l_1)}} + \dots + \varepsilon^2 a_{2h_1+2}(x) \frac{d^{2h_1+2}u}{dx^{2h_1+2}}.$$

 \exists емма 2. Если $k=2k_1$ и характеристическая форма $\widetilde{\pi}_{\varepsilon}(\xi;x)=$ $=\mathrm{Re}\,\pi_{\varepsilon}^{(1)}(\xi;x)$ оператора Λ_{ε} :

$$\widetilde{\pi}_{\varepsilon}(\xi; x) = \operatorname{Re} \, \pi_{\varepsilon}^{(1)}(\xi; x) = \sum_{j=1}^{l_{1}} (-1)^{h_{1}+j} \varepsilon^{2^{j}} a_{2(h_{1}+j)}(x) \, \xi^{2(h_{1}+j)} \geqslant
\geqslant \alpha^{2} \sum_{j=1}^{l_{1}} \varepsilon^{2^{j}} \xi^{2(h_{1}+j)},$$
(3.11)

 $\epsilon\partial e$ α^2 не зависит ни от x, ни от ξ , то ∂ ля ∂ остаточно малых ϵ :

$$(\Lambda_{\varepsilon}u, u) \geqslant \beta^{2} \left[\sum_{i=1}^{l_{1}} \varepsilon^{2j} \| D^{k_{1}+j} u \|^{2} \right] - M\varepsilon \left[\| D^{k_{1}}u \|^{2} + \| u \|^{2} \right], \tag{3.12}$$

где M — некоторая константа, а $u \in \Omega^0(0, 1)$, т. е. u — любая гладкая функция, обращающаяся в нуль вблизи точек 0 и 1 (u вне [0, 1]). — φ

Доказательство 2). 1^o . Допустим сначала, что коэффициенты $a_i(x)=a_i$ — постоянные. Тогда, обозначая преобразование Фурье u(x) через $\widetilde{u}(\xi)$:

$$\widetilde{u}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-i\xi x} u(x) dx, \quad (i\xi)^r \widetilde{u}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-i\xi x} D^r u dx,$$

и пользуясь равенством Парсеваля и (3.11), получим:

$$(\Lambda_{\varepsilon}u, u) = (\widetilde{\pi}_{\varepsilon}(\xi)\widetilde{u}(\xi), \widetilde{u}(\xi)) \geqslant \alpha^{2} \sum_{j=1}^{l_{1}} (\varepsilon^{2j}\xi^{2(k_{1}+j)}\widetilde{u}, \widetilde{u}) =$$

$$= \alpha^{2} \sum_{j=1}^{l_{1}} \varepsilon^{2j} ||D^{k_{1}+j}u||^{2}, \qquad (3.12')$$

¹⁾ Легко привести достаточные условия на коэффициенты L_0 , при которых (3.9) имеет место.

²⁾ Доказательство этой леммы следует доказательству Гординга [29] и Брауде ра [23]. [24] полуограниченности эллиптических операторов (не содержащих параметры).

и оценка (3.12) установлена. Заметим, что оценка (3.12') справедлива для любых финитных функций u.

 2° . Пусть теперь $a_i(x)$ — переменные коэффициенты, и w обращается в нуль вне интервала $(\gamma, \gamma + \circ) \subset [0, 1]$. Тогда, обозначая через $\Lambda^{\circ}_{\mathfrak{s}}$ оператор, полученный из $\Lambda_{\mathfrak{s}}$ заменой его коэффициентов их значениями в точке x_0 , $\gamma < x_0 < \gamma + \circ$, получим согласно (3.12') для $w \in \Omega^{\circ}(\gamma, \gamma + \delta)$:

$$(\Lambda_{\varepsilon} w, \ w) = (\Lambda_{\varepsilon}^{0} w, \ w) + ((\Lambda_{\varepsilon} - \Lambda_{\varepsilon}^{0}) \ w, \ w) \geqslant$$

$$\geqslant \alpha^{2} \left[\sum_{j=1}^{l_{1}} \varepsilon^{2j} \| D^{h_{1}+j} u \|^{2} \right] + ((\Lambda_{\varepsilon} - \Lambda_{\varepsilon}^{0}) \ w, \ w). \tag{3.13}$$

Интегрируя по частям до порядка, равного половине порядка каждого слагаемого, входящего в Λ_{ϵ} , получим:

$$((\Lambda_{\epsilon} - \Lambda_{\epsilon}^{0}) w, w) = \sum_{j=1}^{l_{1}} \epsilon^{2j} (-1)^{k_{1}+j} (D^{k_{1}+j} w, D^{k_{1}+j} (\eta_{k_{1}+j} w)), \qquad (3.14)$$

где

$$\eta_i(x) = a_{2i}(x) - a_{2i}(x_0).$$

Заметим, что

$$D^{s}\left(\eta_{s}w\right) = \eta_{s}D^{s}w + \sum_{i=1}^{s} \left(\begin{array}{c} s \\ i \end{array}\right)\eta_{s}^{(i)}D^{s-i}w.$$

Оценивая скалярное произведение в каждом члене из (3.14), получаем:

$$|(D^{s}w, D^{s}(\eta_{s}w))| \leq |(\eta_{s}D^{s}w, D^{s}w)| + \sum_{i=1}^{s} {s \choose i} |(D^{s}w, \eta_{s}^{(i)}D^{s-i}w)| \leq$$

$$\leq \omega_{\delta} [||D^{s}w||^{2}] + C_{0} \left[\sum_{i=1}^{s} |(D^{s}w, \eta_{s}^{(i)}D^{s-i}w)| \right], \qquad (3.15)$$

где

$$\omega_{\delta} = \max_{\mathbf{x} \in [\gamma, \gamma + \delta]} |\eta_{\delta}| \quad (s = k_1 + 1, \ldots, k_1 + l_1).$$

Используя известное неравенство для скалярных произведений $|(u,v)| \le \frac{1}{2} \left(\omega^2 \|u\|^2 + \frac{1}{\omega^2} \|v\|^2 \right)$ при любом $\omega > 0$ и обозначая через C максимум на [0, 1] выражений $|a_{2j}^{(i)}(x)|$ $(j = k_1 + 1, \ldots, k_1 + l_1; 1 \le i \le j)$, получим:

$$\begin{split} |(D^{s}\omega, \, \eta_{s}^{(i)}D^{s-i}\omega)| & \leq \frac{1}{2} \left[|\omega^{2}| |D^{s}\omega||^{2} + \frac{1}{\omega^{2}} ||\eta_{s}^{(i)}D^{s-i}\omega||^{2} \right] \leq \\ & \leq \frac{1}{2} \left[|\omega^{2}| |D^{s}\omega||^{2} + \frac{C^{2}}{\omega^{2}} ||D^{s-i}\omega||^{2} \right] \quad (i = 1, \ldots, s). \end{split}$$

Полагая $\omega^2=\varepsilon$, будем иметь (при $i\geqslant 1$):

$$\varepsilon^{2\;(s-k_1)}\,|\,(D^sw,\;\eta_s^{(i)}D^{s-i}w)\,|\leqslant \varepsilon\left(\frac{1}{2}\,\varepsilon^{2\;(s-k_1)}\,\|\,D^sw\,\|^2\,\right)+\frac{C^2}{2}\,\varepsilon^{2\;(s-k_1)-1}\,\|\,D^{s-i}w\,\|^2.$$

При

$$s-i>k_1,\ i>1,\ \epsilon^{2\;(s-k_1)-1}\leqslant \epsilon\;\epsilon^{2\;(s-i-k_1)},$$

при

$$s-i\leqslant k_1$$
, $\varepsilon^{2\,(s-k_1)-1}\leqslant \varepsilon$ (tak kak $s>k_1$, $\varepsilon<1$).

Отсюда и из (3.15) получаем при $s > k_1$:

$$\varepsilon^{2(s-k_{1})} | (D^{s}w, D^{s}(\eta_{s}w)) | \leq (\omega_{5} + C_{1}\varepsilon) \varepsilon^{2(s-k_{1})} || D^{s}w ||^{2} + C_{1}\varepsilon \left(\sum_{r=k_{1}+1}^{s-1} \varepsilon^{2(r-k_{1})} || D^{r}w ||^{2} + \sum_{\sigma=0}^{k_{1}} || D^{\sigma}w ||^{2} \right).$$
(3.16)

Подставляя найденные оценки в (3.14) и делая приведение подобных членов, получим:

$$|((\Lambda_{\varepsilon} - \Lambda_{\varepsilon}^{0}) w, w)| \leq (\omega_{\delta} + C_{2}\varepsilon) \sum_{j=1}^{l_{1}} \varepsilon^{2j} ||D^{h_{1}+j}w||^{2} + C_{3}\varepsilon \sum_{\sigma=0}^{h_{1}} ||D^{\sigma}w||^{2}.$$
 (3.17)

Выберем ϵ и δ такими, чтобы $\omega_{\epsilon}+C_{2}\epsilon<\frac{\alpha^{2}}{2}$. Тогда из (3.17) и (3.13) получим:

$$(\Lambda_{\varepsilon}w, w) \geqslant \frac{\alpha^{2}}{2} \sum_{j=1}^{l_{1}} \varepsilon^{2j} \| D^{k_{1}+j}w \|^{2} - \varepsilon C_{3} \sum_{\sigma=0}^{k_{1}} \| D^{\sigma}w \|,$$
 (3.18)

и, поскольку

$$||D^{i}w||^{2} \leqslant M_{i} ||D^{k_{1}}w||^{2} \quad (i \leqslant k_{1}),$$
 (3.18')

оценка (3.12) и в этом случае установлена.

3°. Пусть $u \in \Omega^0$ (0, 1). Представим функцию, равную 1 на [0, 1], в виде

$$1 = \sum_{i=1}^{N} \zeta_i^2(x), \quad 0 \leqslant x \leqslant 1, \tag{3.18''}$$

где $\zeta_i(x)$ — гладкие функции, отличные от нуля на

$$(\gamma_i, \gamma_i + \delta_i), \quad \delta_i \leqslant \delta.$$

Имеем:

$$(\Lambda_{\varepsilon}u, u) = \left(\sum_{i=1}^{N} \zeta_{i}^{2}(x) \Lambda_{\varepsilon}u, u\right) = \sum_{i=1}^{N} \left[\left(\Lambda_{\varepsilon}\zeta_{i}u, \zeta_{i}u\right) + B(u, \zeta_{i})\right],$$

причем в $B(u,\zeta_i)$ и входит с производными, по крайней мере на единицу низшего порядка, чем в соответствующих членах $\sum (\Lambda_{\varepsilon}\zeta_i u,\zeta_i u)$. С помощью интегрирования по частям и таких же оценок скалярных произведений, какие мы применяли в 2^0 , найдем, что

$$|B(u,\zeta_i)| \leqslant C \varepsilon \left[\sum_{j=1}^{l_1} \varepsilon^{2j} ||D^{k_1+j}u||^2 \right] + C \varepsilon \left[\sum_{s=0}^{k_1} ||D^s u||^2 \right].$$
 (3.19)

Взяв, ε столь малым, что $C\varepsilon \leqslant \frac{\alpha^2}{4}$, и применяя к каждому члену $(\Lambda_{\varepsilon}\zeta_i u, \zeta_i u)$ оценку (3.18), получим:

$$(\Lambda_{\varepsilon}u, u) \geqslant \frac{\alpha^{2}}{2} \sum_{j=1}^{l_{1}} \sum_{i=1}^{N} \varepsilon^{2j} \|D^{k_{1}+j}(\zeta_{i}u)\|^{2} - C_{3}\varepsilon \sum_{\sigma=0}^{k_{1}} \sum_{i=1}^{N} \|D^{\sigma}(\zeta_{i}u)\|^{2} - C\varepsilon \sum_{j=1}^{l_{1}} \varepsilon^{2j} \|D^{k_{1}+j}u\|^{2} - C\varepsilon \sum_{s=1}^{k_{1}} \|D^{s}u\|^{2}.$$
 (3.20)

Так как

$$\| D^{k_1+j} \zeta_i u \|^2 \gg \| \zeta_i D^{k_1+j} u \|^2 - C_1 \sum_{r=1}^{k_1+j} \| D^{k_1+j-r} u \|^2,$$

то из (3.20) выведем:

$$(\Lambda_{\varepsilon}u, u) \geqslant \frac{\alpha^{2}}{2} \sum_{j=1}^{l_{1}} \sum_{i=1}^{N} \varepsilon^{2j} \| \zeta_{i} D^{k_{1}+j} u \|^{2} - C_{2} \varepsilon \sum_{j=1}^{l_{1}} \varepsilon^{2j} \| D^{k_{1}+j} u \|^{2} - C_{4} \varepsilon \sum_{s=1}^{k_{1}} \| D^{k_{s}} \|^{2}.$$
 (3.20')

Взяв ε столь малым, чтобы $C_2 \varepsilon \leqslant \frac{\alpha^2}{4}$ и учитывая (3.18") и оценки вида (3.18'), получим (3.12), что и требовалось доказать.

Замечание. Лемма 2 доказана нами для $u \in \Omega^0$ (0, 1). Однако она справедлива также для функций u из $W_2^{2(h_1+h)}$, удовлетворяющих граничным условиям (3.3). Чтобы в этом убедиться, достаточно оценке (3.12) придать следующую форму:

$$\sum_{j=1}^{l_{1}} (-1)^{h_{1}+j} \varepsilon^{2j} (D^{h_{1}+j}u, D^{h_{1}+j} (a_{2(h_{1}+j)}u) + M\varepsilon (||D^{h_{1}}u||^{2} + ||u||^{2}) \geqslant \beta^{2} \sum_{j=1}^{l_{1}} \varepsilon^{2j} ||D^{h_{1}+j}u||^{2}, \quad (3.21)$$

причем сумма, стоящая в левой части (3.21), получена в результате интегрирования по частям из формы ($\Lambda_{\epsilon}u$, u).

Пусть $u \in W_2^{2(k_1+l_1)}$ (достаточно даже, чтобы $u \in W_2^{(k_1+l_1)}$) и u удовлетворяет граничным условиям (3.3). Тогда, как известно, можно построить последовательность функций $\{u_n(x)\}$ ($=\{J_\eta(\zeta_n u)\}$, где ζ_n - гладкая функция, обращающаяся в нуль в $\left[0,\frac{1}{n}\right]$ и $\left[1-\frac{1}{n},1\right]$, J_η - оператор осреднения с радиусом $\eta=\frac{1}{2n}$), $u_n\in \Omega^0$ (0, 1) и $u_n\stackrel{W_2^{(k_1+l_1)}}{\Longrightarrow}u$. Подставляя в (3.21) $u=u_n$ и переходя к пределу при $n\to\infty$, мы убедимся в справедливости (3.21)

для указанных выше u. Обозначим через M_εu часть оператора L_εu, образованную членами нечетного порядка, содержащими в коэффициентах ε:

$$M_{\epsilon}u \equiv \sum_{j=0}^{l_1-1} \epsilon^{2j+1} a_{2(k_1+j)+1}(x) \frac{d^{2(k_1+j)+1}u}{dx^{2(k_1+j)+1}}.$$
 (3.22)

Имеет место

 Π емма 3. Π усть $u(x) \in W_2^{2(k_1+l_1)}$ и удовлетворяет граничным условиям (3.3). Тогда

$$(M_{\epsilon}u, u) \geqslant -C\varepsilon \Big(\sum_{j=1}^{l_1-1} \varepsilon^{2j} \|D^{l_1+j}u\|^2 + \|D^{l_1}u\|^2 + \|u\|^2\Big). \tag{3.23}$$

Доказательство. Для доказательства достаточно заметить, что при граничных условиях (3.3)

$$\varepsilon^{2l_{1}-1}\left(a_{2(k_{1}+l_{1})-1}D_{i}^{2(k_{1}+l_{1})-1}u, u\right) = \\
= \frac{1}{2}\varepsilon^{2l_{1}-1}\left(-1\right)^{k_{1}+l_{1}-1}\int_{0}^{1}\frac{d}{dx}\left(a_{2(k_{1}+l_{1})-1}D^{k_{1}+l_{1}-1}u\right)^{2}dx + \\
+ \varepsilon^{2l_{1}-1}\sum_{j\leq k_{1}+j_{1}-1}\left(b_{j}D^{k_{1}+l_{1}-1}u, D^{j}u\right). \tag{3.24}$$

Первое слагаемое в правой части (3.24) равно нулю в силу граничных условий (3.3). Остальные слагаемые оцениваются так же, как мы это делали выше

$$\left| \varepsilon^{2l_{1}-1} \sum_{j \leqslant k_{1}+l_{1}-1} \left(b_{j} D^{k_{1}+l_{1}-1} u, D^{j} u \right) \right| \leqslant C_{1} \varepsilon \left[\sum_{j=1}^{l_{1}-1} \varepsilon^{j_{2}} \| D^{k_{1}+j} u \|^{2} + \| D^{k_{1}} u \|^{2} + \| u \|^{2} \right].$$

Аналогичную оценку допускают и другие члены, входящие в $M_{\epsilon}u$. Лемма доказана.

Доказательство теоремы 4. Для функций u из $W_2^{2(k_1+l_1)}$, удовлетворяющих граничным условиям (3.3), согласно (3.12), (3.23), (3.9) имеем:

$$\begin{split} (L_{\varepsilon}u,\,u) &= (\Lambda_{\varepsilon}u,\,u) + (M_{\varepsilon}u,\,u) + (L_{0}u,\,u) \geqslant \\ \geqslant (\beta^{2} - C\varepsilon) \sum_{j=1}^{l_{1}} \varepsilon^{2j} \parallel D^{h_{1}+j}u \parallel^{2} + (\gamma^{2} - M\varepsilon - C\varepsilon) \left(\parallel u \parallel^{2} + \parallel D^{h_{1}}u \parallel^{2} \right) \end{split}$$

Отсюда, взяв ε столь малым, что $\beta^2 - C\varepsilon \geqslant \beta_1^2 > 0$ и $\gamma^2 - M\varepsilon - C\varepsilon \geqslant \beta_1^2 > 0$, получим первую часть оценки (3.10). Далее, подставляя $L_\varepsilon u = h$ и пользуясь неравенством $(L_\varepsilon u, u) = (h, u) \leqslant \frac{1}{2} \left(\left. \omega^2 \left\| u \right\|^2 + \frac{1}{\omega^2} \left\| h \right\|^2 \right)$, получим (3.10). Теорема доказана.

Аналогичные теоремы о равномерной позитивности L_{ϵ} имеют место и в других случаях.

Теорема 4'. Если k+l=2 (k_1+l_1) — четное число, $k=2k_1+1$ — нечетное, характеристическая форма $v_{\epsilon}^{(1)}$ оператора $L_{\epsilon}^{(1)}$ имеет положительную вещественную часть

Re
$$\pi_{\varepsilon}^{(1)}(\xi; x) = \sum_{j=1}^{l_1} \varepsilon^{2j-1} (-1)^{k_1+j} a_{2(k_1+j)}(x) \xi^{2(j+k_1)} \geqslant \alpha^2 \sum_{j=1}^{l_1} \varepsilon^{2j-1} \xi^{2(j+k_1)}, \quad (3.8')$$

а оператор L_0 позитивен в смысле выполнения (3.9), то операторы L_{ϵ} при граничных условиях (3.3) равномерно позитивны для достаточно малых ϵ .

Теорема 4" и 4"'. Если порядок L_{ε} – нечетный: k+l=2 $(k_1+l_1)+1$, выполнено условие (3.8) или (3.8') в зависимости от четности k: $k=2k_1$ или $k=2k_1+1$, и оператор L_0 позитивен в смысле (3.9), то операторы L_{ε} при граничных условиях (3.4), соответственно (3.5), для достаточно малых ε равномерно позитивны.

B условиях теорем 4', 4", 4"' имеет место энергетическая оценка (3.10) или

$$\sum_{j=1}^{l_1} \varepsilon^{2j-1} \|D^{k_1+j}u\|^2 + \|D^{k_1}u\|^2 + \|u\|^2 \leqslant \bar{\beta}^2 (L_{\varepsilon}u, u) \leqslant \bar{\beta}_1^2 \|h\|^2$$
 (3.10')

в зависимости от четности k: $k=2k_1$ или $k=2k_1+1$.

Доказательства этих теорем проводятся буквально так же, как доказательство теоремы 4. Сначала устанавливаем соответствующие оценки для четной части Λ_{ϵ} оператора L_{ϵ} , а для нечетной части M_{ϵ} доказываем лемму, аналогичную лемме 3. Например, для случая $k+l=2(k_1+l_1)+1$, а $k=2k_1$ (теорема 4") имеет место следующая

Пемма 3'. Пусть функция $u \in W_2^{(2(k_1+l_1)+1)}$ и удовлетворяет граничным условиям (3.4) или (3.5), в зависимости от знака $a_{2(k_1+l_1)+1}$. Тогда, в случае условий (3.4), квадратичная форма

$$(M_{\varepsilon}u, u) \geqslant \frac{1}{2} (-1)^{k_{1}+l_{1}} a_{2} (k_{1}+l_{1})+1 (1) \varepsilon^{2l_{1}+1} \left| \frac{d^{k_{1}+l_{1}} u (1)}{dx^{k_{1}+l_{1}}} \right|^{2} - C\varepsilon \left(\sum_{j=1}^{l_{1}} \varepsilon^{2j} \|D^{k_{1}+j} u\|^{2} + \|u\|^{2} + \|D^{k_{1}} u\|^{2} \right) (3.23')$$

и, в случае условий (3.5),

$$(M_{\varepsilon}u, u) \geqslant \frac{1}{2} (-1)^{k_{1}+l_{1}+1} a_{2(k_{1}+l_{1})+1} (0) \varepsilon^{2l_{1}+1} \left| \frac{d^{k_{1}+l_{1}} u(0)}{dx^{k_{1}+l_{1}}} \right|^{2} - C\varepsilon \left(\sum_{j=1}^{l_{1}} \varepsilon^{2j} ||D^{k_{1}+j} u||^{2} + ||u||^{2} + ||D^{k_{1}} u||^{2} \right).$$
(3.24')

Отметим, что первые слагаемые правых частей (3.23') и (3.24') положительны, в силу условия на знак $a_{2(k_1+l_1)+1}$ (см. (3.4) и (3.5)).

Доказательство. Для доказательства этих оценок достаточно лишь заметить, что

$$\varepsilon^{2l_1+1} \left(a_{2(k_1+l_1)+1} D^{2(k_1+l_1)+1} u, u \right) = \\
= \frac{1}{2} \varepsilon^{2l_1+1} \left(-1 \right)^{k_1+l_1} \int_0^1 \frac{d}{dx} \left(a_{2(k_1+l_1)+1} \left(D^{k_1+l_1} u \right)^2 \right) dx + \\
+ \varepsilon^{2l_1+1} \sum_{j \le k_1+l_1} \left(b_j D^{k_1+l_1} u, D^j u \right), \quad (3.25)$$

где $b_j(x)$ — ограниченные функции (равные с точностью до множителя производным от $a_{2(k_1+l_1)+1}(x)$ порядка $\leq k_1+l_1$). Далее, учитывая граничные условия (3.4) или (3.5), производя такое же интегрирование по частям для других слагаемых, входящих в $(M_{\mathfrak{g}}u,u)$, и используя приемы, примененные выше для оценок скалярных произведений, получим (3.23'), соответственно (3.24').

2. Мы доказали, что положительность формы (3.8) или (3.8') и позитивность вырожденного оператора L_0 обеспечивают и равномерную позитивность операторов L_0 , а значит, и равномерную разрешимость задачи A_0 .

Вырожденная задача $A_{\mathbf{0}}$ состоит в решении уравнения

$$L_0 w = h \tag{3.26}$$

ири граничных условиях, зависящих от порядка оператора $L_{
m 0}.$

1) В случае четности порядка $k=2k_1$ этого оператора граничные условия являются условиями первой краевой задачи, а именно:

$$\frac{d^s w}{dx^s}\Big|_{x=0} = \frac{d^s w}{dx^s}\Big|_{x=1} = 0 \quad (s=0, 1, \dots, k_1 - 1).$$
 (3.27)

Заметим, что из условия (3.9) положительности оператора L_0 следует:

$$(-1)^{k_1} a_{2k_1}(x) = (-1)^{k_1} a_k(x) > 0. (3.28)$$

- 2) В случае нечетности порядка $k=2k_1+1$ оператора L_0 граничные условия будем задавать в зависимости от знака старшего коэффициента $a_k(x)=a_{2k_1+1}$, который мы считаем отличным от нуля. Именно:
 - а) если $(-1)^{k_1} a_{2k_1+1}(x) > 0$, то берем следующие условия:

$$\frac{d^{r}w}{dx^{r}}\Big|_{x=0} = 0 \quad (r=0, 1, \dots, k_{1}), \quad \frac{d^{s}w}{dx^{s}}\Big|_{x=1} = 0 \quad (s=0, 1, \dots, k_{1}-1), \quad (3.29)$$

b) если $(-1)^{h_1} a_{2h_1+1}(x) < 0$, то условия следующие:

$$\left. \frac{d^s w}{dx^s} \right|_{x=0} = 0 \ (r=0, \ 1, \ \dots, \ k_1-1), \ \left. \frac{d^s w}{dx^s} \right|_{x=1} = 0 \ (s=0, \ 1, \ \dots, \ k_1). \ (3.30)$$

Выбор этих условий вытекает из желания добиться позитивности оператора L_0 .

Мы приступаем к исследованию асимптотики u_{ϵ} — решения задачи A_{ϵ} . Мы видели в предыдущем параграфе, что в случае регулярности вырождения задачи A_{ϵ} в задачу A_{0} , имеет место представление (2.35) решения u_{ϵ} , содержащее погранслой. Мы сейчас покажем, что приведенные в теоремах 4 и 4' условия равномерной позитивности операторов L_{ϵ} при приведенных выше граничных условиях для L_{0} обеспечивают регулярность вырождения задачи A_{ϵ} в задачу A_{0} .

Рассмотрим разные случаи четности и нечетности операторов L_{ϵ} и L_{0} . 1) L_{ϵ} и L_{0} — операторы четного порядка: k+l=2 ($k_{1}+l_{1}$), $k=2k_{1}$.

При переходе от задачи $A_{\rm s}$ к задаче $A_{\rm o}$, от условий (3.3) к (3.27) на каждом конце x=0 и x=1 теряется ровно $l_{\rm I}$ условий. Требование регулярности означает, что дополнительное характеристическое уравнение для каждого из концов имеет ровно $l_{\rm I}$ корней с отрицательной вещественной частью. Этими уравнениями являются алгебраические уравнения:

$$Q_0(\lambda) = \sum_{j=0}^{3l_1} a_{2k_1+j, 0} \lambda^j = 0, \quad a_{s, 0} = a_s(x) |_{x=0},$$
(3.31)

$$Q_1(\lambda) = \sum_{j=0}^{2l_1} (-1)^{2k+j} a_{2k_1+j, 1} \lambda^j = 0, \quad a_{r, 1} = a_r(x) |_{x=1}.$$
 (3.32)

Так как, по предположению, для любого $x \in [0, 1]$

$$\widetilde{\pi}_{\varepsilon}(\xi; x) = \operatorname{Re} \pi_{\varepsilon}^{(1)}(\xi; x) = \sum_{j=1}^{l_1} (-1)^{j+k_1} \varepsilon^{2j} a_{2(k_1+j)}(x) \xi^{2(k_1+j)} \geqslant$$

$$\geqslant C_1^2 (\varepsilon^{2l_1} \xi^{2(k_1+l_1)} + \varepsilon^2 \xi^{2(k_1+l)}) \qquad (3.33)$$

и, кроме того, в силу (3.28), $(-1)^{h_1} a_{2h_1}(x) > 0$, то

Re
$$\pi_{\varepsilon}(\xi; x) = (-1)^{h_1} a_{2h_1}(x) \xi^{2h_1} + \widetilde{\pi_{\varepsilon}}(\xi; x) \geqslant C^2 (\xi^{2h_1} + \varepsilon^{2l_1} \xi^{2(h_1+l_1)}).$$
 (3.34)

Умножая на ε^{2k_1} и полагая $\varepsilon\xi=\eta$, получаем:

$$\sum_{r=0}^{l_1} (-1)^{k_1+r} a_{2(k_1+r)}(x) \eta^{2(k_1+r)} \gg C^2 (\eta^{2k_1} + \eta^{2(k_1+l_1)}).$$

В частности, при x = 0 имеем:

$$\sum_{r=0}^{l_1} (-1)^{k_1+r} a_{2(k_1+r), 0} \eta^{2(k_1+r)} \gg C^2 (\eta^{2k_1} + \eta^{2(k_1+l_1)}).$$
 (3.35)

Ниже доказывается алгебраическая лемма 4 (стр. 50), утверждающая, что условие (3.35) обеспечивает, что уравнение (3.31) имеет ровно l_1 корней с отрицательными вещественными частями.

Аналогично, и уравнение (3.32) имеет ровно l_1 корней с отрицательными вещественными частями.

Следовательно, имеет место регулярное вырождение.

2) Оператор L_{ε} – четного порядка, L_0 – нечетного порядка: k+l=2 $(k_1+l_1),\ k=2k_1+1$.

В данном случае, полагая $\eta = \varepsilon \xi$, получим:

$$\varepsilon^{2k_1+1} \widetilde{\tau}_{\varepsilon}(\xi, x) = \sum_{j=1}^{l_1} (-1)^{j+k_1} a_{2(k_1+j)}(x) \eta^{2(k_1+j)} \geqslant C_1^2(\eta^{2(k_1+1)} + \eta^{2(k_1+l_1)}). \quad (3.36)$$

В частности, при x = 0 имеем:

$$\sum_{j=1}^{l_1} (-1)^{j+k_1} a_{2(k_1+j), 0} \eta^{2(k_1+j)} \gg C_1^2 (\eta^{2(k_1+l_1)} + \eta^{2(k_1+1)}).$$

Если $(-1)^{k_1}a_{2k_1+1}(x) < 0$, то, в частности, $(-1)^{k_1}a_{2k_1+1}$, 0 < 0. Тогда уравнение

$$Q_0(\lambda) = \sum_{j=1}^{2l_1} a_{2k_1+j, 0} \lambda^{j-1} = 0$$
 (3.37)

имеет, в силу леммы 5 (см. ниже), $l_{\rm 1}$ корней в левой полуплоскости. Уравнение же

$$Q_1(\lambda) = \sum_{j=1}^{2l_1} (-1)^{2k_1+j} a_{2k_1+j, 1} \lambda^{j-1} = 0$$
 (3.37')

имеет младший коэффициент, равный $-a_{2k_1+1, 1} = -a_{2k_1+1}$ (1), и, следовательно, $(-1)^{k_1}(-a_{2k_1+1, 1}) > 0$. В силу той же леммы 5 уравнение (3.37') имеет $l_1 - 1$ корней в левой полуплоскости.

Сравнивая условия (3.30) с (3.3) убеждаемся, что и в этом случае условие регулярности выполнено.

Совершенно аналогично из той же леммы 5 и из условий (3.29) и (3. 3) вытекает регулярность вырождения и в случае $(-1)^{k_1} a_{2k_1+1}(x) > 0$.

3) Оператор L_{ε} — нечетного порядка, а L_0 — четного порядка: $k+l=2(k_1+l_1)+1$, $k=2k_1$.

В данном случае уравнение (3.31) имеет вид

$$Q_0(\lambda) = \sum_{j=0}^{2l_1+1} a_{2k_1+j, 0} \lambda^j = 0.$$

Условие (3.33) имеет тот же вид, как в случае 1), и так же, как там (так как $(-1)^{k_1} a_{2k_1} > 0$), выполняется неравенство (3.35).

Отсюда и из леммы 6 (см. ниже стр. 52) следует: при $(-1)^{k_1+l_1}a_{2\,(k_1+l_1)+1}>0$ уравнение $Q_0(\lambda)=0$ имеет ровно l_1+1 корней в левой полуплоскости, а уравнение $Q_1(\lambda)=0$, для которого старший коэффициент $(-1)^{2l_1+1}a_{2\,(k_1+l_1)+1}$, имеет l_1 корней в левой полуплоскости. Отсюда и из граничных условий (3.4) и (3.27) вытекает регулярность вырождения.

4) $k=2k_1+1$, $l=2l_1$. Здесь надо воспользоваться леммой 7 (см. ниже стр. 52). Уравнение $Q_0(\lambda)=0$ в силу этой леммы имеет столько корней в левой полуплоскости, сколько указано в формуле (3.48).

Для уравнения $Q_1(\lambda)=0$ младший коэффициент равен $-a_{2k_1+1}$, старший равен $-a_{2(k_1+l_1)+1}$ (см. (1.30), (2.8')). Поэтому случаю а) формул (3.48) для уравнения $Q_0(\lambda)=0$ отвечает случай б) для уравнения $Q_1(\lambda)=0$ и обратно; случаю в) для уравнения $Q_0(\lambda)=0$ — случай г) для уравнения $Q_1(\lambda)=0$ и обратно.

Сравнивая во всех четырех возможных случаях условия (3.4) или (3.5) с условиями (3.29) или (3.30), убеждаемся, что всегда имеет место регулярность вырождения задачи A_z в задачу A_0 .

Итак, мы доказали, *что выполнение условий теоремы* 4 *или* 4′, 4′′, 4′′′, является достаточным для регулярности вырождения. Мы установили тем самым следующее предложение:

Те о р е м а 5. В условиях теоремы 4 или 4', 4'', 4''', если для оператора L_0 задаются указанные выше граничные условия (3.27) или (3.29) или (3.30), задача $A_{\mathfrak{s}}$ разрешима, она регулярно вырождается в задачу $A_{\mathfrak{o}}$ и для ес решения $u_{\mathfrak{s}}$ справедлива асимптотика, указанная формулой (2.35).

3. Основные алгебранческие предложения о числе корней с отридательными вещественными частями дополнительного характеристического уравнения. Изучим вопрос о числе корней с отридательными вещественными частями дополнительного характеристического уравнения

$$Q^{(k, l)}(t) = \sum_{i=k}^{k+l} a_i t^{j-k} = 0 \quad (a_k \neq 0, \ a_{k+l} \neq 0).$$
 (3.38)

С помощью этих корней мы строили пограничные слои в § 2.

Сделаем сначала два общих замечания.

Замечание 1. Если стремить свободный член a_k в уравнении (3.38) к нулю, фиксируя остальные коэффициенты a_j (j>k) и считая $a_{k+1}\neq 0$, то лишь один из корней уравнения (3.38) λ_0 стремится к нулю вместе с a_k и

$$\lambda_0 \approx -\frac{a_k}{a_{k+1}}, \quad \text{Re}\,\lambda_0 \approx -\frac{a_k}{a_{k+1}}.$$
 (3.39)

⁴ Успехи матем. наук, т. XII, вып. 5

Отсюда при достаточно малом a_k

$$\operatorname{sign} \operatorname{Re} \lambda_0 = -\operatorname{sign} \frac{a_k}{a_{k+1}}$$
.

Замечание 2. Если старший коэффициент a_{k+l} в (3.28) стремить к нулю, фиксируя все остальные коэффициенты a_j , j < k+l, то при $a_{k+l-1} \neq 0$ уравнение (3.38) имеет один корень μ_0 , стремящийся к бесконечности при $a_{k+l} \rightarrow 0$, и этот корень эквивалентен

$$\mu \approx -\frac{a_{k+l-1}}{a_{k+l}} \,, \quad \mathrm{Re} \, \mu \approx -\frac{a_{k+l-1}}{a_{k+l}} \,. \label{eq:mu_eps_prob}$$

Отсюда при достаточно малом a_{k+1}

$$\operatorname{sign} \operatorname{Re} \mu = -\operatorname{sign} \frac{a_{k+l-1}}{a_{k+l}} \ . \tag{3.40}$$

Относительно многочлена $t^h Q^{(k,\ l)}(t)$ предположим, что при $t=i\xi$, $\operatorname{Im} \xi=0$, его вещественная часть положительна, точнее:

$$\operatorname{Re}(i\xi)^{k} Q^{(k, l)}(i\xi) \equiv \sum_{k \le 2j \le k+l} (-1)^{j} a_{2j} \xi^{2j} \geqslant C^{2}(\xi^{2m} + \xi^{2M}), \qquad (3.41)$$

где 2m и 2M — наименьшее и, соответственно, наибольшее из четных чисел 2j, для которых $k \leqslant 2j \leqslant k+l$. Из (3.41), очевидно, вытекает, что

$$(-1)^m a_{2m} > 0 \quad \text{if} \quad (-1)^M a_{2M} > 0.$$
 (3.42)

Рассмотрим 4 случая и докажем 4 алгебранческие леммы:

 Π е м м а 4. Π усть $k=2k_1=2m$ и k+l=2 $(k_1+l_1)=2M-$ числа четные. Π ри выполнении условия (3.41) уравнение (3.38) имеет ровно l_1 корней в левой полуплоскости.

Действительно, в этом случае

$$Q^{(h,\ l)}\left(t \right) = Q^{(2h_{1},\ 2l_{1})}\left(t \right) = Q_{2}\left(t^{2} \right) + tQ_{3}\left(t^{2} \right),$$

где

$$Q_2(t^2) = \sum_{i=0}^{l_1} a_{2(k_1+j)} t^{2j}, \quad Q_3(t^2) = \sum_{i=0}^{l_1-1} a_{2(k_1+j)+1} t^{2j}.$$

Обозначим $Q_{z}^{(k,\ l)}(t)=Q_{z}(t^{2})+\tau tQ_{3}(t^{2}).$ В силу (3.41) на мнимой оси

$$(-1)^{h_1} \operatorname{Re} Q_{\tau}^{(h, l)}(i\xi) = (-1)^{h_1} Q_2(-\xi^2) = \sum_{j=h_1}^{h_1+l_1} (-1)^j a_{2j} \xi^{2(j-h_1)} \geqslant C^2 (1+\xi^{2l_1}) > 0.$$

Отсюда ясно, что при любом вещественном т уравнение

$$Q_{\tau}^{(k, l)}(t) = 0 \tag{3.43}$$

не имеет корней на мнимой оси. Поэтому, если τ меняется от 0 до 1, корни уравнения (3.43), непрерывно меняясь, не пересекают мнимую ось. Так как коэффициент $a_{2(k_1+l_1)}$ при старшей степени фиксирован и отличен от нуля, то корни уравнения (3.43) при изменении τ не уходят в бесконечность. Отсюда следует, что число корней уравнения (3.43), лежащих в левой полуплоскости, не меняется при изменении τ . При $\tau=0$ уравнение (3.43) принимает вид

$$Q_0^{(h, l)}(t) \equiv Q_2(t^2) \equiv \sum_{j=0}^{l_1} a_{2(h_1+j)} t^{2j} = 0$$

и, следовательно, имеет l_1 пар корней $(\lambda_i, -\lambda_i)$. Поэтому оно имеет ровно l_1 корней в левой полуплоскости. В силу сказанного выше уравнение (3.43) при любом τ имеет l_1 корней в левой полуплоскости. В частности, исходное уравнение (3.38), отвечающее значению $\tau=1$, имеет l_1 корней в левой полуплоскости.

 Π е м м а 5. Если $k=2k_1+1-$ число нечетное, k+l=2 $(k_1+l_1)-$ число четное, и выполнено условие (3.41), то уравнение (3.38) имеет в левой полуплоскости l_1 корней при $(-1)^{k_1}$ $a_{2k_1+1}<0$ и l_1-1 корней при $(-1)^{k_1}$ $a_{2k_1+1}>0$.

Имеем:

$$Q^{(h, l)}(t) = Q^{(2h_1+1, 2l_1-1)}(t) = tQ_4(t^2) + Q_5(t^2) + a_{2h_1+1},$$
(3.44)

причем теперь мы обозначили:

$$Q_4(t^2) = \sum_{j=1}^{l_1} a_{2(j+h_1)} t^{2(j-1)}, \quad Q_5(t^2) = \sum_{j=1}^{l_1-1} a_{2(h_1+j)+1} t^{2j}.$$

В силу (3.41), на мнимой оси $(t = i\xi)$

$$\operatorname{Im} Q^{(h, 1)}(i\xi) = \xi Q_4((i\xi)^2) = \xi \sum_{j=1}^{l_1} (-1)^{j-1} a_{2(j+h_1)} \xi^{2(j-1)} \neq 0 \text{ при } \xi \neq 0. (3.45)$$

Отсюда следует, что npu $a_{2k_1+1}\neq 0$ уравнение (3.38) в нашем случае не имеет корней на мнимой оси. Из (3.42) вытекает, что $(-1)^{k_1+1}a_{2k_1+2}>0$, так как сейчас $m=k_1+1$.

Фиксируем теперь все коэффициенты a_s ($s>2k_1+1$), кроме a_{2k_1+1} , и будем менять последний. При $a_{2k_1+1}=0$ имеем:

$$Q^{(k, l)}(t)|_{a_{2k_1+1}=0}=Q^{(2k_1+1, 2l_1-1)}(t)|_{a_{2k_1+1}=0}=tQ^{(2(k_1+1), 2(l_1-1))}(t),$$

и, следовательно, в этом случае уравнение $Q^{(k,\ l)}(t)|_{a_{2k_1+1}=0}==tQ^{(2\ (k_1+1),\ 2\ (l_1-1))}(t)=0$ имеет один простой корень, равный 0, и остальные корни, удаленные от 0 на конечное расстояние. В силу (3.45) и (3.41) многочлен $Q^{(2\ (k_1+1),\ 2\ (l_1-1))}(t)$ на мнимой оси $t=i\xi$ отличен от нуля, и, согласно доказанному в лемме 4, имеет ровно l_1-1 корней в левой полуплоскости. Следовательно, и многочлен $Q^{(2k_1+1,\ 2l_1-1)}(t)$ при $a_{2k_1+1}=0$ имеет в левой полуплоскости l_1-1 корней. Если a_{2k_1+1} на чинает меняться, двигаясь по положительной или соответственно по отрицательной действительной полуоси, то, согласно замечанию 1, нулевой корень при малом a_{2k_1+1} переходит в близкий к нулю корень λ_0 , для которого в силу (3.39)

$$\operatorname{sign} \operatorname{Re} \lambda_0 = -\operatorname{sign} \frac{a_k}{a_{k+1}} = -\operatorname{sign} \frac{a_{2k_1+1}}{a_{2k_1+2}}.$$

Так как $(-1)^{k_1+1} a_{2k_1+2} > 0$, то sign Re $\lambda_0 = (-1)^{k_1} \operatorname{sign} a_{2k_1+1}$, т. е. малый корень λ_0 расположен в левой полуплоскости при $(-1)^{k_1} a_{2k_1+1} < 0$ и в правой при $(-1)^{k_1} a_{2k_1+1} > 0$. При дальнейшем изменении положения a_{2k_1+1} на положительной или отрицательной полуоси и фиксированных остальных коэффициентах корни уравнения (3.38) не могут пересекать мнимую ось и не уходят в бесконечность (так как старший коэффициент $a_{2(k_1+l_1)} \neq 0$

в силу (3.42)). Поэтому число корней в левой полуплоскости остается равным l_1 или l_1-1 в зависимости от знака $(-1)^{k_1}a_{2k_1+1}$.

 Π е м м а 6. Π усть $k=2k_1-$ число четное, $l=2l_1+1-$ число нечетное. B этом случае при выполнении условия (3.41) уравнение (3.38) имеет в левой полуплоскости l_1+1 корней при $(-1)^{k_1+l_1}a_{2\;(k_1+l_1)+1}>0$ и l_1 корней при $(-1)^{k_1+l_1}a_{2\;(k_1+l_1)+1}<0$.

Для доказательства будем считать старший коэффициент $a_{k+l} = a_{2(k_1+l_1)+1}$ переменным, а остальные фиксированными. Имеем:

$$Q^{(k, l)}(t) = Q^{(2k_1, 2l_1 + 1)}(t) = Q^{(2k_1, 2l_1)}(t) + a_{2(k_1 + l_1) + 1}t^{2l_1 + 1}.$$

Согласно (3.42) в нашем случае коэффициент $(-1)^{k_1+l_1}a_{2(k_1+l_1)} > 0$. Поэтому согласно замечанию 2 при стремлении к нулю $a_{k+l} = a_{2(k_1+l_1)+1}$ один из корней уравнения (3.38) становится бесконечным, остальные корниконечные и при $a_{2(k_1+l_1)+1} = 0$ совпадают с корнями уравнения $Q^{(2k_1,2l_1)}(t) = 0$. В силу условия (3.41) и доказанного в лемме 4 утверждения, среди корней ровно l_1 лежат в левой полуплоскости.

Будем теперь, исходя от нуля, двигать коэффициент $a_{k+l} = a_{2(k_1+l_1)+1}$ по положительной (соответственно по отрицательной) вещественной полуоси. При малых значениях a_{k+l} мы наряду с $2(k_1+l_1)$ конечными корнями, в силу замечания 2, будем иметь большой корень μ , для которого в силу (3.40):

$$sign \operatorname{Re} \mu = - \operatorname{sign} \frac{a_{2(k_1+l_1)}}{a_{2(k_1+l_1)+1}}.$$
 (3.46)

Так как $(-1)^{k_1+l_1}a_{2(k_1+l_1)}>0$, то (3.46) принимает вид

sign Re
$$\mu = (-1)^{k_1 + l_1 + 1}$$
 sign $a_{2(k_1 + l_1) + 1}$; (3.47)

при $(-1)^{k_1+l_1+1}a_{2(k_1+l_1)+1}>0$ $((-1)^{k_1+l_1}a_{2(k_1+l_1)+1}<0)$ большой корень и расположен в правой полуплоскости, а в левой полуплоскости расположено всего l_1 корней. При $(-1)^{k_1+l_1+1}a_{2(k_1+l_1)+1}<0$ $((-1)^{k_1+l_1}a_{2(k_1+l_1)+1}>0)$ большой корень и расположен в левой полуплоскости, и в левой полуплоскости будет l_1+1 корней.

При дальнейшем перемещении $a_{2(k_1+l_1)+1}$ по положительной или по отрицательной полуоси число корней в левой полуплоскости, как и в предыдущих случаях, не меняется.

 Π емма 7. Если $k=2k_1+1$ и $k+l=2\left(k_1+l_1\right)+1$ —числа нечетные и выполнено (3.41), то уравнение (3.38) имеет число корней, расположенных в левой полуплоскости, равное

a)
$$l_1$$
 $npu (-1)^{k_1}a_{2k_1+1} > 0$, $(-1)^{k_1+l_1}a_{2(k_1+l_1)+1} > 0$,
b) l_1 $npu (-1)^{k_1}a_{2k_1+1} < 0$, $(-1)^{k_1+l_1}a_{2(k_1+l_1)+1} < 0$,
c) $l_1 - 1$ $npu (-1)^{k_1}a_{2k_1+1} > 0$, $(-1)^{k_1+l_1}a_{2(k_1+l_1)+1} < 0$,
c) $l_1 + 1$ $npu (-1)^{k_1}a_{2k_1+1} < 0$, $(-1)^{k_1+l_1}a_{2(k_1+l_1)+1} > 0$.

Этот случай сводится к случаю, разобранному в лемме 5, как предыдущий случай— к случаю, разобранному в лемме 4. Представим многочлен $Q^{(k, l)}(t) = Q^{(2k_1+1, 2l_1)}(t)$ в виде $Q^{(k, l)}(t) = Q^{(2k_1+1, 2l_1-1)}(t) + a_{2(k_1+l_1)+1}t^{2l_1}$.

Будем считать коэффициент $a_{k+l} = a_{2(k_1+l_1)+1}$ переменным, а остальные коэффициенты фиксированными. Согласно (3.42) $(-1)^{k_1+l_1}a_{2(k_1+l_1)}>0$ $(M=k_1+l_1)$ и, следовательно, согласно замечанию 2, при $a_{2(k_1+l_1)+1}=0$ уравнение (3.38) имеет один бесконечный корень (т. е. при $a_{k+l}\to 0$, $\mu\to\infty$) и конечные корни, совпадающие с кориями уравнения $Q^{(2k_1+1,\ 2l_1-1)}(t)=0$. Среди этих корней, в силу доказанного в лемме 5, l_1 или l_1-1 корней расположено в левой полуплоскости, в зависимости от знака $(-1)^{k_1}a_{2k_1+1}$.

Если теперь коэффициент $a_{2(k_1+l_1)+1}$ передвигать от нулевого значения по положительной или по отрицательной вещественной полуоси, то для большого корня μ выполняется равенство (3.40), при этом, так как в силу (3.42) $(-1)^{k_1+l_1}a_{2(k_1+l_1)} > 0$, то

$$\operatorname{sign} \operatorname{Re} \mu = -\operatorname{sign} \frac{a_{2(h_1+l_1)}}{a_{2(h_1+l_1)+1}} = -(-1)^{h_1+l_1} \operatorname{sign} a_{2(h_1+l_1)+1}.$$

При $(-1)^{k_1+l_1}a_{2(k_1+1)+1}>0$ μ имеет отрицательную вещественную часть, и, следовательно, в левой полуплоскости появляется дополнительный корень, при обратном неравенстве этот корень не появляется. При дальнейшем движении $a_{2(k_1+l_1)+1}$ вдоль положительной или вдоль отрицательной полуоси число корней в левой полуплоскости не изменяется, так как эти корни не могут перейти, как и выше, через мнимую ось.

Итак, при $(-1)^{k_1}a_{2k_1+1}>0$, согласно лемме 5, уравнение $Q^{(2k_1+1,\ 2l_1-1)}(t)=0$ имеет l_1-1 корней в левой полуплоскости, а при $(-1)^{k_1+l_1}a_{2(k_1+l_1)+1}>0$, согласно сказанному выше, к этим корням прибавляется еще один большой корень μ с Re $\mu<0$, и первый случай (3.48) установлен. Аналогично проверяем все другие соотношения (3.48).

§ 4. Эллиптические уравнения второго порядка с малым параметром при старших производных

1. Примеры погранслоя в случае уравнений в частных производных, а) Для уравнений в частных производных, содержащих параметры при старших производных, очевидно, наблюдается также явление пограничного слоя, если только выполнены некоторые условия, аналогичные условию регулярности для обыкновенных уравнений. Начнем с самых простых примеров.

Пусть в прямоугольнике $Q\colon 0\leqslant x\leqslant a,\ 0\leqslant y\leqslant b$ дано дифференциальное уравнение

$$L_{\varepsilon}u \equiv \varepsilon \frac{\partial u(x,y)}{\partial x} + u(x,y) = h(x,y)$$
(4.1)

и, кроме того, задано начальное условие

$$u|_{x=0} = 0. (4.2)$$

Решение $u_{\varepsilon}(x, y)$ задачи Коши (4.1), (4.2) дается формулой

$$u_{\varepsilon}(x, y) = \frac{1}{\varepsilon} \int_{0}^{x} e^{-\frac{x-x_{1}}{\varepsilon}} h(x_{1}, y) dx_{1}. \tag{4.3}$$

Если функция $h\left(x,\;y\right)$ имеет ограниченную производную по x в \overline{Q} , то

$$u_{\varepsilon}\left(x,\ y\right)=h\left(x_{1},\ y\right)e^{-\frac{x-x_{1}}{\varepsilon}}\Big|_{x_{1}=0}^{x_{1}=x}-\int\limits_{0}^{x}\frac{\partial h\left(x_{1},y\right)}{\partial x}e^{-\frac{x-x_{1}}{\varepsilon}}dx_{1}=$$

$$= h(x, y) - h(0, y) e^{-\frac{x}{\epsilon}} - \int_{0}^{x} \frac{\partial h(x_1, y)}{\partial x} e^{-\frac{x - x_1}{\epsilon}} dx_1.$$
 (4.4)

Заметим теперь, что $w=h\left(x,\,y\right)$ является решением вырожденного уравнения

$$L_0 w \equiv w = h(x, y), \tag{4.5}$$

полученного из (4.1) при $\varepsilon = 0$. Очевадно, функция w(x, y) = h(x, y), вообще говоря, не удовлетворяет начальному условию (4.2), так как $w|_{x=0} = h(0, y)$.

Слагаемое

$$v_{\varepsilon} = -h(0, y) e^{-\frac{x}{\varepsilon}} \tag{4.6}$$

имеет характер пограничного слоя, т. е. функции, заметно отличной от нуля лишь вблизи части границы Q (девой стороны прямоугольника Q). Кроме того,

$$v_{\varepsilon}|_{x=0} = -h(0, y) = -w|_{x=0},$$
 (4.7)

и, таким образом, сумма решения w вырожденного уравнения (4.5) и пограничного слоя (4.6) удовлетворяет граничному условию (4.2):

$$(w + v_{\varepsilon})|_{x=0} = 0.$$

Справа в (4.4) имеется еще третье слагаемое. Обозначим его через z(x, y) и оценим по модулю:

$$\left|\left|z\left(x,\,y\right)\right.\right| = \left|\left.\int\limits_{0}^{x}\frac{\partial h}{\partial x}e^{-\frac{x-x_{1}}{\varepsilon}}dx_{1}\right| \leqslant M\int\limits_{0}^{x}e^{-\frac{x-x_{1}}{\varepsilon}}dx_{1} = M\varepsilon\left(1-e^{-\frac{x}{\varepsilon}}\right),$$

где $M=\max\left|\frac{\partial h}{\partial x}\right|$. Итак, решение задачи Коши $u_{\varepsilon}\left(x,\ y\right)$ мы можем представить в виде суммы:

$$u_{\varepsilon}(x, y) = w(x, y) + v_{\varepsilon}(x, y) + z(x, y), \tag{4.8}$$

где w(x, y) — решение вырожденного уравнения (4.5), $v_{\varepsilon}(x, y)$ — функция типа пограничного слоя, а $z(x, y) = O(\varepsilon)$.

Производя дальнейшее интегрирование по частям в правой части (4.4), если h(x, y) — достаточно гладкая функция, мы сможем получить более точную асимптотику $u_{\varepsilon}(x, y)$, с остаточным членом $z_n(x, y) = O(\varepsilon^n)$.

б) Пусть в круге $Q: 0 \le p < 1$ дано уравнение

$$L_{\varepsilon}u \equiv \varepsilon^2 \Delta u - u = h \tag{4.9}$$

при однородных граничных условиях

$$u|_{a=1}=0. (4.10)$$

По аналогии с рассмотрениями $\S 2$ найдем асимптотику решения $u_{\varepsilon}(x, y)$ задачи (4.9), (4.10) при малых ε , $\varepsilon > 0$. Первым членом этой асимптотики является функция w(x, y) = -h(x, y) — решение вырожденного уравнения

$$L_0 w \equiv -w = h. \tag{4.11}$$

Эта функция w не удовлетворяет, всобще говоря, граничному условию (4.10), и, следовательно, разность $u_{\varepsilon} - w$, всобще говоря, не является малой вблизи Γ относительно ε . Оказывается, что она имеет характер пограничного слоя. Для того чтобы найти его, запишем уравнение (4.9) в координатах (r, φ) , где $r = 1 - \rho$, а (ρ, φ) — полярные координаты. Мы получим:

$$L_{\varepsilon}u \equiv \varepsilon^{2} \left(\frac{\partial^{2}u}{\partial r^{2}} - \left(\frac{1}{1-r} \right) \frac{\partial u}{\partial r} + \frac{1}{(1-r)^{2}} \frac{\partial^{2}u}{\partial \varphi^{2}} \right) - u = h. \tag{4.12}$$

Разность $v = u_{\varepsilon} - w$ удовлетворяет уравнению

$$L_{\varepsilon}\overline{v} = -\varepsilon^2 \Delta w \tag{4.13}$$

и граничным условиям

$$|v|_{r=0} = (u_{\varepsilon} - w)|_{r=0} = -w|_{r=0} = -w(0, \varphi) = h(0, \varphi).$$
 (4.14)

Для приближенного нахождения функции \overline{v} достаточно решить вместо уравнения $(4.13)^t$ обыкновенное по r уравнение

$$Mv \equiv \varepsilon^2 \frac{\partial^2 v}{\partial r^2} - v = 0 \tag{4.14'}$$

при граничном условии (4.14) и требовании быстрого убывания к нулю при $\frac{r}{\varepsilon}\gg 1$.

Действительно, если сделать замену переменного $t=rac{r}{arepsilon}$ в операторе $L_{arepsilon},$ то получим:

$$L_{\varepsilon}v = Mv + \varepsilon R_1v + \varepsilon^2 R_2v + \ldots,$$

где

$$Mv \equiv \frac{\partial^2 v}{\partial t^2} - v, \ R_1 v \equiv -\frac{\partial v}{\partial t}, \ \ldots,$$

и, следовательно, уравнение (4.14') получается как уравнение для первого приближения к решению \overline{v} уравнения (4.13).

Решением уравнения (4.14') типа погранслоя (т. е. бесконечно малым при $t \to \infty$), удовлетворяющим условию (4.14), является функция

$$v = -w(0, \varphi) e^{-\frac{r}{\varepsilon}} = -w(0, \varphi) e^{-t}.$$
 (4.15)

Как мы сейчас увидим, сумма функции w (т. е. решения уравнения (4.11)) и самого элементарного пограничного слоя v_{ϵ} , полученного умножением v на сглаживающий множитель ϕ (ρ), дает в первом приближении асимптотику u_{ϵ} во всей области \overline{Q} . Действительно, для невязки $z = u_{\epsilon} - w - v_{\epsilon}$ имеем:

$$L_{\mathbf{s}}z = h - h - \mathbf{s}^2 \Delta w + O(\mathbf{s}) = O(\mathbf{s}). \tag{4.16}$$

Так как $z|_{r=0}=0$, то, в силу принципа максимума, из (4.16) выводим, что и $z=O\left(\varepsilon\right)$. Следовательно,

$$u_{\varepsilon} = \omega + v_{\varepsilon} + z, \quad z = O(\varepsilon).$$
 (4.17)

Замечание. Отметим, что если бы мы вместо уравнения (4.14') для определения функции v взяли уравнение

$$M^{(1)}v \equiv \varepsilon^2 \left(\frac{\partial^2 v}{\partial r^2} - \frac{\partial v}{\partial r} \right) - v = 0,$$

то в (4.17) мы получили бы $O\left(\epsilon^{2}\right)$ вместо $O\left(\epsilon\right)$.

В § 7 нами будут рассмотрены общие эллиптические уравнения с малыми параметрами, вырождающиеся в эллиптические же уравнения, и будут выведены асимптотики для u_{ϵ} с остаточным членом любого порядка малости: $O(\epsilon^s)$.

2. Рассмотрим теперь подробнее общее эллиптическое уравнение второго порядка, содержащее малый параметр при старших производных. Так как обобщение приведенных ниже выкладок на случай *п* переменных не представляет никакого труда, мы будем вести основное изложение для случая двух независимых переменных.

Пусть дан линейный эллиптический дифференциальный оператор L го который с помощью замены независимых переменных может быть представлен в виде

$$L_{\varepsilon}u \equiv \varepsilon L_2 u + L_1 u, \tag{4.18}$$

где

$$L_{2}u \equiv a (x, y) \frac{\partial^{2}u}{\partial x^{2}} + 2b (x, y) \frac{\partial^{2}u}{\partial x \partial y} + c (x, y) \frac{\partial^{2}u}{\partial y^{2}} + d (x, y) \frac{\partial u}{\partial x} + e (x, y) \frac{\partial u}{\partial y} + g (x, y) u \qquad (a (x, y) > 0), (4.19)$$

$$L_1 u = \frac{\partial u}{\partial x} - f(x, y) u, \quad \underline{f(x, y) \geqslant x^2 > 0}. \tag{4.20}$$

Пусть Q — плоская область, Γ — ее граница.

Будем называть задачей $A_{\mathfrak{s}}$ решение уравнения

$$L_{\varepsilon}u_{\varepsilon} = h\left(x, y\right) \tag{4.21}$$

при условии

$$u_{\mathfrak{s}}|_{\Gamma}=0. \tag{4.22}$$

В силу того, что $f(x, y) \gg \alpha^2$, эта задача при малых ϵ всегда имеет, и притом единственное, решение.

Будем называть параметрами задачи A_{ϵ} правую часть, коэффициенты уравнения (4.21) и границу области. Мы скажем, что параметры задачи имеют гладкость s, если указанные функции и граница s раз дифференцируемы.

Рассмотрим также вырожденное уравнение

$$L_1 w = h. (4.23)$$

Его характеристики суть прямые $y={\rm const.}$ Для простоты мы предположим, что лишь две характеристики $y=y_0$ и $y=y_1(y_1>y_0)$ касаются границы Γ , так что Q лежит в полосе $y_0\leqslant y\leqslant y_1$, и пусть $A\left(x_0,\ y_0\right)$ и $B\left(x_1,\ y_1\right)$ —точки

касания этих характеристик с Γ . Точки A и B разбивают Γ на две дуги: Γ^* и Γ^- , такие, что характеристика y=c ($y_0 < c < y_1$) при возрастании x пересекает сначала Γ^- , потом Γ^* , образуя с Γ углы, отличные от 0 и π .

Задача A_0 заключается в решении задачи Коши для уравнения (4.23) при начальном условии

$$w|_{\mathbf{r}^+} = 0. \tag{4.24}$$

Решение w задачи A_0 дается формулой

$$w(x, y) = \int_{x_{1}(y)}^{x} e^{\int_{t}^{x} f(\tau, y) d\tau} h(t, y) dt, \qquad (4.25)$$

где $x = x_1(y)$ — уравнение Γ^+ .

Пусть Γ имеет с крайней характеристикой $y=y_0$ (соответственно $y=y_1$) порядок касания p-1 (соответственно q-1). Тогда вблизи точки $A\left(x_0,\ y_0\right)$ (соответственно $B\left(x_1,\ y_1\right)$) имеем:

$$x_{1}(y) - x_{0} = C\left[(y - y_{0})^{\frac{1}{p}} + o(y - y_{0}) \right],$$

$$\frac{dx_{1}}{dy} = O\left((y - y_{0})^{\frac{1}{p} - 1} \right), \frac{d^{2}x_{1}}{dy^{2}} = O\left((y - y_{0})^{\frac{1}{p} - 2} \right), \tag{4.26}$$

и аналогичные формулы имеют место в окрестности точки B. Из (4.25) видно, что если функции f(x, y) и h(x, y) имеют в Q непрерывные производные до порядка r и $x_1(y)$ имеет при $y_0 < y < y_1$ непрерывные производные до порядка r, то и у функции w(x, y) будут непрерывными все производные до порядка r по обеим переменным в любой подобласти Q - V(A) - V(B), где V(C) — окрестность точки C, и даже все производные r+1-го порядка, кроме $\frac{\partial^{r+1}w}{\partial y^{r+1}}$. Однако в силу (4.26) в точках A и B производные по y от w имеют особенности, а именно, дифференцируя (4.25) по y, получим в окрестности точки A:

$$\frac{\partial w}{\partial y} = \int_{x_{1}(y)}^{x} \frac{\partial}{\partial y} \left[e^{i \int_{x_{1}(y)}^{x} f(\tau, y) d\tau} h(t, y) \right] dt - e^{x_{1}(y)} \int_{x_{1}(y)}^{x} f(\tau, y) d\tau h(x_{1}(y), y) \cdot x'_{1}(y) = O(x'_{1}(y)) = O\left((y - y_{0})^{\frac{1}{p} - 1}\right), (4.27)$$

$$\frac{\partial^{2}w}{\partial y^{2}} = O\left(\frac{d^{2}x_{1}(y)}{dy^{2}}\right) = O\left((y - y_{0})^{\frac{1}{p} - 2}\right)$$

и аналогичные формулы в окрестности точки B.

Ниже мы исследуем асимптотику разности $u_{\varepsilon}-w$, где u_{ε} — решение задачи A_{ε} , а w — решение задачи A_{0} , методами, применявшимися в § 2.

3. Основной итерационный процесс для уравнений второго порядка. Введем в окрестности Γ систему координат (ρ , φ), именно строим систему «трансверсалей», т. е. векторов \overline{PR} длины $\eta > 0$, проведенных из точек P дуги Γ внутрь Q с гладкостью 2m, причем \overline{PR}

образует острый угол θ с осью Ox, $|\theta| \leqslant \frac{\pi}{2} - \delta_1$. При достаточно малом η трансверсали не пересекаются; координата ρ точки S трансверсали \overline{PR} есть ее расстояние PS, а φ есть длина части \overrightarrow{AP} дуги Γ -. В новых координатах в окрестности Γ -

$$L_{\varepsilon}u \equiv \varepsilon \left(\alpha(\rho, \varphi) \frac{\partial^{2}u}{\partial \rho^{2}} + 2\beta(\rho, \varphi) \frac{\partial^{2}u}{\partial \rho \partial \varphi} + \gamma(\rho, \varphi) \frac{\partial^{2}u}{\partial \varphi^{2}} + \omega(\rho, \varphi) \frac{\partial u}{\partial \rho} + \right.$$

$$\left. + \mu(\rho, \varphi) \frac{\partial u}{\partial \varphi} + g(\rho, \varphi) u \right) + \varkappa(\rho, \varphi) \frac{\partial u}{\partial \varphi} + \delta(\rho, \varphi) \frac{\partial u}{\partial \rho} - f(\rho, \varphi) u. \quad (4.28)$$

Поскольку коэффициенты оператора L_{ϵ} достаточно гладкие, имеем:

(В том случае, когда ρ совпадает с нормалью n, $\delta(\varphi) = \cos(n, x)|_{\Gamma}$.) Введем новое переменное $t = \frac{\rho}{\varepsilon}$; тогда $\frac{d^s}{d\rho^s} = \frac{1}{\varepsilon^s} \frac{d^s}{dt^s}$. Поэтому по аналогии с формулой (2.9) § 2 имеем:

$$\varepsilon L_{\varepsilon} u \equiv M_0 u + \varepsilon R_1 u + \ldots + \varepsilon^N R_N u + \varepsilon^{N+1} R_{N+1} u, \tag{4.30}$$

где

$$\begin{split} M_0 u &\equiv \alpha \left(\varphi \right) \frac{\partial^2 u}{\partial t^2} + \delta \left(\varphi \right) \frac{\partial u}{\partial t} \equiv \varepsilon^2 \alpha \left(\varphi \right) \frac{\partial^2 u}{\partial \rho^2} + \varepsilon \delta \left(\varphi \right) \frac{\partial u}{\partial \rho} \,, \\ R_1 u &\equiv \alpha_1 \left(\varphi \right) t \, \frac{\partial^2 u}{\partial t^2} + 2 \beta \left(\varphi \right) \frac{\partial^2 u}{\partial t \, \partial \varphi} + \omega \left(\varphi \right) \frac{\partial u}{\partial t} + \varkappa \left(\varphi \right) \frac{\partial u}{\partial \varphi} + \delta_1 \left(\varphi \right) t \, \frac{\partial u}{\partial t} - f \left(\varphi \right) u \end{split} \tag{4.31}$$

и аналогично выражается оператор $R_i u$ (1 < i < N), причем в его коэффициенты входят множителями t^j , j < i (ср. § 2), а R_{N+1} —оператор, коэффициенты которого представляют собою члены вида: $t^k H$ (ρ , φ), k < N+1, где H—ограниченная функция.

Так же, как в § 2, построим функцию $v_0\left(\frac{\rho}{\varepsilon},\,\phi\right)=v_0(t,\,\phi)$ типа погранслоя в окрестности Γ^- , именно v_0 есть решение уравнения

$$M_0 v_0 \equiv \alpha \left(\varphi \right) \frac{\partial^2 v_0}{\partial t^2} + \delta \left(\varphi \right) \frac{\partial v_0}{\partial t} = 0 \tag{4.32}$$

с не зависящими от t коэффициентами: $\alpha(\varphi) \geqslant \alpha_0^2 > 0$ (в силу эллиптичности (4.28)), $\delta(\varphi) \geqslant c_0^2 > 0$. Характеристическим уравнением для (4.32) будет

$$Q_{\varphi}(\lambda) \equiv \alpha(\varphi) \lambda^{2} + \delta(\varphi) \lambda = 0.$$

Это уравнение имеет для любой точки $\varphi \in \Gamma^-$ один корень: $-\lambda_1(\varphi) = -\frac{\delta}{\alpha}\frac{(\varphi)}{(\varphi)}$ в левой полуплоскости (т. е. столько, сколько условий задачи A_{ϵ} выпадает на Γ^- при переходе к задаче A_0). В этом заключается условие регулярности вырождения задачи A_{ϵ} в задачу A_0 (ср. § 1, 2). Отрицательному корню $-\lambda_1(\varphi)$ отвечает частное решение уравнения (4.32) типа погранслоя:

$$v = \exp\left[-\lambda_1(\varphi) \ t\right] = \exp\left[-\frac{\lambda_1 \rho}{\varepsilon}\right]. \tag{4.33}$$

Мы теперь потребуем, чтобы v_0 удовлетворяло на Γ^- условию

$$v_0|_{t=0} = v_0|_{\rho=0} = -w(0, \varphi)$$
 (4.33')

 (v_0) компенсирует невязку для w в граничном условии (4.22) задачи A_s на Γ^-). Очевидно,

$$v_0 = -w(0, \varphi) \exp(-\lambda_1(\varphi)t) = -w(0, \varphi) \exp(-\lambda_1(\varphi)\frac{\rho}{\varepsilon}). \quad (4.33'')$$

Пусть уже найдены w_j и v_j при j < i, $i \leqslant N_{\cdot i}$ Совершенно аналогично тому, как еделано в формуле (2.22) § 2, определим w_i как решение уравнения

$$L_1 w_i = -L_2 w_{i-1} \tag{4.34}$$

(в данном случае в правой части (2.22) только одно слагаемое и отсутствуют а,) при граничных условиях

$$w_i|_{\Gamma^+} = 0. \tag{4.34'}$$

Далее, v_i определяется как решение уравнения с постоянными относительно t коэффициентами, аналогичного (2.23):

$$M_0 v_i = -\sum_{s=1}^{n} R_s v_{i-s} \tag{4.35}$$

при условиях, что v_i есть функция типа погранслоя и удовлетворяет условию

$$v_i|_{\Gamma} = -w_i|_{\Gamma}. \tag{4.36}$$

Предполагая по индукции, что v_j при j < i имеют вид: $v_j = P_j (t, \varphi) \exp (-\lambda_1 t)$, где P_j – многочлен от t степени $\leqslant j$ с коэффициентами, зависящими от φ (это условие выполняется при j=0), находим, как это было сделано в $\S 2$, что

$$v_i = P_i(t, \varphi) \exp(-\lambda_1 t) = P_i\left(\frac{\rho}{\varepsilon}, \varphi\right) \exp\left(-\lambda_1 \frac{\rho}{\varepsilon}\right).$$
 (4.37)

Найдя w_i и v_i при $i \leqslant m$, определим v_{m+1} как решение уравнения (4.35) при i=m+1 и граничном условии

$$v_{m+1}|_{\Gamma} = 0.$$

Можем теперь положить в (4.29) и (4.30) N=m+1. Обозначив через z_m невязку

$$\mathbf{z}_m = \mathbf{u}_{\varepsilon} - \mathbf{w}_0 - \sum_{i=1}^m \varepsilon^i \mathbf{w}_i - \sum_{j=0}^{m+1} \varepsilon^j \mathbf{v}_j,$$

имеем:

$$\begin{split} L_{\mathbf{e}} z_m &= L_{\mathbf{e}} u_{\mathbf{e}} - L_{\mathbf{e}} \left(w_0 + \sum_{i=1}^m \varepsilon^i w_i \right) - L_{\mathbf{e}} \left(\sum_{j=0}^{m+1} \varepsilon^j v_j \right) = \\ &= h - \left\{ L_{\mathbf{I}} w_0 + L_{\mathbf{I}} \left(\sum_{i=1}^m \varepsilon^i w_i \right) + \varepsilon L_{\mathbf{I}} \left(\sum_{i=0}^m \varepsilon^i w_i \right) \right\} - \\ &- \left\{ \varepsilon^{-1} \left[\left(M_0 + \sum_{j=1}^{m+2} \varepsilon^j R_s \right) \sum_{j=0}^{m+1} \varepsilon^j v_j \right\}. \end{split} \tag{4.38}$$

Формулы (4.34) показывают, что все члены при ε^i , $i \leqslant m$, в первых фигурных скобках сокращаются, а формулы (4.35) показывают, что они

сокращаются и во вторых фигурных скобках при $i \leqslant m+1$. Тем самым ясно, что в правой части (4.38) стоит выражение вида $\epsilon^{m+1}\overline{g}_m$, где

$$\overline{g}_m = -L_2 w_m - (R_{m+2} v_0 + R_{m+1} v_1 + \dots + R_1 v_{m+1}) + \dots$$
(4.39)

Функции v_i определены в Q_η^{-1}), а значит, и формула (4.38) имеет смысл только в полоске Q_η . Можно определить эти функции всюду в Q, считая их равными 0 вне Q_η , а в Q_η умножить их на сглаживающую функцию $\phi\left(\frac{\rho}{\eta}\right)$ (равную 1 при $\rho\leqslant\frac{\eta}{3}$, равную 0 при $\rho\geqslant\frac{2}{3}$ η и бесконечно дифференцируемую). Сохраним обозначения v_i для $\phi\left(\frac{\rho}{\eta}\right)v_i$. Невязка z_m и формула (4.38) теперь уже определены всюду в Q, однако вид правых частей (4.38) и (4.39) несколько изменится. Из формул для новой невязки z_m видно, что $L_{\mathfrak{s}}z_m$ в $Q_{\frac{\eta}{3}}-V\left(A\right)-V\left(B\right)$ — ограниченная функция при условиях достаточной гладкости параметров задачи: в $Q_{\frac{\eta}{3}}$ $\phi=1$ и вид (4.38) и (4.39) не изменится. При $\rho>\frac{\eta}{3}$ функции ехр $\left(-\lambda_i,\frac{\rho}{\varepsilon}\right)$ и их любые производные стремятся к нулю быстрее, чем любая степень ε . То же будет иметь место и для $\phi\left(\frac{\rho}{\varepsilon}\right)$ ехр $\left(-\lambda_i,\frac{\rho}{\varepsilon}\right)$, а значит, для функций v_i . Следова-

место и для $\phi\left(\frac{\rho}{\eta}\right) \exp\left(-\lambda_i \frac{\rho}{\varepsilon}\right)$, а значит, для функций v_i . Следова-

тельно, при $\eta \geqslant
ho > rac{\eta}{3}$ — $L_{\epsilon} \Big(\sum_{i=0}^{\epsilon} \epsilon^i v_i \Big)$ будет функцией порядка малости выше

$$\epsilon^{m+1}$$
; Ha $Q - Q_{\eta}$ $L_{\epsilon} \left(\sum_{i=0}^{m+1} \epsilon^{i} v_{i} \right) \equiv 0.$

Таким образом, всюду в Q - V(A) - V(B) имеем:

$$L_{\varepsilon} z_m = \varepsilon^{m+1} g_m, \tag{4.39'}$$

где g_m — ограниченная функция.

Отметим, что при достаточной гладкости коэффициентов функцию $\varepsilon^{m+1}\,g_m$ можно дифференцировать. Однако, так как (см. (4.39)) в g_m входят функции типа погранслоя, при каждом дифференцировании $\varepsilon^{m+1}g_m$ порядок относительно ε в окрестности Γ^- уменьшается на 1. Вне любой фиксированной окрестности Γ^- производные от $\varepsilon^{m+1}g_m$ имеют тот же порядок ε^{m+1} .

4. Сформулируем теперь основные теоремы об асимптотике u_{ϵ} .

Теорема 6. Если параметры задачи A_{ε} имеют гладкость 2(m+1)+p-го порядка, то

$$u_{\varepsilon} = w_0 + \sum_{j=1}^{m} \varepsilon^j w_j + \sum_{r=0}^{m+1} \varepsilon^r v_r + z_m, \quad z_m = \varepsilon^{m+1} g_m, \tag{4.40}$$

где w_i получены с помощью первого итерационного процесса, v_i — функции типа погранслоя вблизи Γ^- , построенные с помощью второго итерационного процесса.

¹⁾ Q_{η} – полоска $\rho \ll \eta$.

Если ввести обозначения:

$$\|z\|_{\widetilde{Q}} = \Big[\sum_{\widetilde{Q}} z^2 dx dy \Big]^{\frac{1}{2}},$$

то для $\widetilde{Q} = Q - V(A) - V(B)$

$$\|z_m\|_{\widetilde{Q}} \leqslant C\varepsilon^{m+1}. \tag{4.41}$$

К роме того, формулу (4.40) можно почленно дифференцировать p+2 раз:

$$D^{i}u_{z} = \sum_{i=0}^{m} \varepsilon^{i}D^{i}w_{j} + \sum_{r=0}^{m+1} \varepsilon^{r}D^{i}v_{r} + \varepsilon^{m+1}D^{i}g_{m}$$

(D^i- любой оператор частной производной i-го порядка), причем

$$\|D^{1}z_{m}\|_{\widetilde{Q}} \leq C\varepsilon^{m+\frac{1}{2}}, \quad \|D^{2}z_{m}\|_{\widetilde{Q}} \leq C\varepsilon^{m},$$

$$\|D^{i}z_{m}\|_{Q_{1}} \leq C\varepsilon^{m+1-\frac{i}{2}}, \quad \|D^{i}z_{m}\|_{U(\Gamma)} \leq C\varepsilon^{m+2-i+\frac{1}{2}}, \quad 3 \leq i \leq p+2,$$

$$Q_{max} = \int_{\Omega} \int_{\Omega}$$

еде Q_1 — любая фиксированная подобласть, не содержащая окрестности U (Γ) части Γ границы Γ : $Q_1=Q-U$ (Γ).

Теорема 7. Если параметры задачи A_{ε} имеют гладкость третьего порядка, то

$$u_{\varepsilon} = w_0 + v_0 + \varepsilon v_1 + \varepsilon g_1, \tag{4.43}$$

где v_0 строится как решение задачи (4.32), (4.33'), $v_1 - \kappa$ ак решение задачи (4.35) (i=1) при нулевом граничном условии: $v_1|_{v=0}=0$ 1), а остаточный член $z=\varepsilon g_1$ допускает во всей области Q оценку:

$$|z| \le C \min ((y - y_0)^{\frac{1}{p}}, \ \epsilon (y - y_0)^{\frac{1}{p} - 1}, (y_1 - y)^{\frac{1}{q}}, \epsilon (y_1 - y)^{\frac{1}{q} - 1}),$$
 (4.44)

гое p-1 и q-1— порядок касания границы Γ с характеристикой $y=y_0$ и $y=y_1$ в точках $A\left(x_0,\,y_0\right)$ и $B\left(x_1,\,y_1\right)$ соответственно.

Таким образом, вне любых фиксированных окрестностей точек A и B, $\exists z \models O$ (ε).

Отметим еще, что если h(x, y) имеет пуль соответствующего порядка в точках A и B, то w_0 не имеет особенностей в A и B, и по всей области Q $|z| = O(\varepsilon)$.

Теорема 8. Если гладкость параметров задачи A_{ε} первого порядка и порядки касания характеристик в точках A и B меньше двух, то для u_{ε} имеет место асимптотика:

$$u_{\varepsilon} = w_0 + v_0 + z,$$

где w_0 — решение задачи A_0 , v_0 — погранслой, построенный с помощью решения уравнения (4.32) при граничном условии (4.33'), а норма невязки z, взятая по всей области Q, оценивается следующим образом:

$$\|z\|^2 \leqslant C\varepsilon, \quad \left\|\frac{\partial z}{\partial x}\right\|^2 + \left\|\frac{\partial z}{\partial y}\right\|^2 \leqslant C.$$
 (4.45)

^{^1)} Очевидно, v_0 и v_1 следует еще умножить на $\psi\left(-\frac{\rho}{\eta}\right)$.

Так как $\left\| \frac{\partial v_0}{\partial \rho} \right\|^2 = O\left(\varepsilon^{-1} \right)$, то второе из неравенств (4.45) указывает, что из невязки z уже удалена главная часть погранслоя.

Теорема 9. Если $h \in \mathcal{L}_2(Q)$, а коэффициенты a, b, c имеют ограниченные первые производные, то u_{ε} слабо сходятся в \mathcal{L}_2 к w_0^{-1}), причем имеет место «слабая асимптотика»:

$$(u_{\varepsilon}, \psi) - (w_{0}, \psi) = O(\sqrt{\varepsilon}) \tag{4.46}$$

для дифференцируемой функции ϕ , обращающейся в нуль в окрестностях точек A и B. Нормы u_{ϵ} равномерно ограничены: $\|u_{\epsilon}\| \leqslant C \|h\|$.

Доказательство этих теорем будет проведено в § 5.

Все эти теоремы распространяются на n-мерный случай, причем рольточек A и B играет (n-2)-мерное множество $\mathfrak D$ точек касания характеристик предельного уравнения 1-го порядка с границей Γ области Q, в которой исследуется задача.

5. Параболический пограничный слой. Если часть Γ_1 границы Γ совпадает с характеристикой для вырожденного оператора L_1 , то при вырождении задачи A_{ϵ} в задачу A_0 вблизи Γ_1 разность $u_{\epsilon}-w_0$ имеет характер пограничного слоя, однако сейчас для его описания недостаточно уже решения обыкновенных уравнений. Как мы покажем ниже, вблизи Γ_1 погранслой можно описать с помощью решения весьма простых параболических уравнений. Рассмотрим сначала простой пример уравнения

$$L_{\varepsilon}u \equiv \varepsilon^{2} \left(\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} \right) + \frac{\partial u}{\partial x} - u = h$$
 (4.47)

в прямоугольнике Q ($0 \le x \le a$, $0 \le y \le b$) при граничных условиях (4.22) (задача A_{ε}). Вырожденное уравнение

$$L_1 w_0 \equiv \frac{\partial w_0}{\partial x} - w_0 = h \tag{4.48}$$

решается при условии

$$w_0|_{x=a} = 0$$
 (задача A_0). (4.48')

Для построения погранслоя вблизи нижнего основания Γ_1 ($0 \leqslant x \leqslant a; y=0$) сделаем в уравнении $L_{\varepsilon}v=0$ замену переменных $\frac{y}{\varepsilon}=t, y=t\varepsilon$:

$$L_{\varepsilon}v \equiv M_{0}v + \varepsilon^{2} \frac{\partial^{2}v}{\partial x^{2}} = 0, \quad M_{0}v \equiv \frac{\partial^{2}v}{\partial t^{2}} + \frac{\partial v}{\partial x} - v,$$

и будем решать это уравнение методом последовательных приближений. В первом приближении решим уравнение

$$M_0 v \equiv \frac{\partial^2 v}{\partial t^2} + \frac{\partial v}{\partial x} - v = 0 \tag{4.49}$$

¹⁾ Слабая сходимость была независимо доказана так же И. Копачеком и О. А. Ладыженской. В недавно появившейся статье О. А. Ладыженской (Вестник ЛГУ, № 7, вып. 2 (1957), 104—120) установлена слабая сходимость решений u_{ϵ} для ряда других задач с малым параметром.

при условиях

$$v|_{x=a} = 0, \quad v|_{t=0} = -w_0|_{y=0} = -w_0(x, 0),$$
 (4.49')

причем уравнение (4.49) решается в области R (x < a, t > 0). Решение задачи (4.49), (4.49') записывается в явном виде: если положить $x_1 = a - x$, $\varphi(\xi) = -e^{-(a-\xi)} w_0(a-\xi, 0)$, то

$$v(x_{1}, t) = v(x_{1}, \frac{y}{\epsilon}) = \frac{e^{a-x_{1}}}{2\sqrt{\pi}} \int_{0}^{x_{1}} \frac{t}{(x_{1}-\xi)^{\frac{3}{2}}} e^{-\frac{t^{2}}{4(x_{1}-\xi)}} \varphi(\xi) d\xi =$$

$$= \frac{e^{a-x_{1}}}{2\sqrt{\pi}} \int_{0}^{x_{1}} \frac{y}{\epsilon(x_{1}-\xi)^{\frac{3}{2}}} e^{-\frac{y^{2}}{4\epsilon^{2}(x_{1}-\xi)}} \varphi(\xi) d\xi. \qquad (4.50)$$

Очевидно, v имеет характер погранслоя вблизи y=0: для $y\geqslant \delta$ v=O (ε^n), где n— любое число, производные по y от v ведут себя как производные погранслоя. Допустим, что функция h имеет непрерывную производную по x в Q и обращается в нуль в точках A (a, 0) и B (a, b) 1). Тогда w_0 (x, x) = x0 x1, дважды дифференцируема при x2 x3, причем x4 (x6) x5 x6, причем x6 (x7) x7 x8.

$$\frac{\partial^{2} v}{\partial x_{1}^{2}} = \frac{e^{a-x_{1}}}{2\sqrt{\pi}} \int_{0}^{x_{1}} \frac{t}{(x_{1}-\xi)^{\frac{3}{2}}} e^{-\frac{t^{2}}{4(x_{1}-\xi)}} [\varphi''(\xi) - 2\varphi'(\xi) + \varphi(\xi)] d\xi. \tag{4.51}$$

Отсюда, в силу принципа максимума, выводим, что

$$\left| \frac{\partial^{2} v}{\partial x^{2}} \right| \leqslant \max_{0 \leqslant \xi \leqslant a} C \left(\left| \frac{d^{2} \varphi}{d \xi^{2}} \right| + 2 \left| \frac{d \varphi}{d \xi} \right| + |\varphi(\xi)| \right).$$

Положим $v_1\left(x,\,y\right)=v\left(\,x_1,\,\frac{y}{\varepsilon}\,\right)\,\phi\left(\,\frac{y}{\delta}\,\right)\,$ и $v_2\left(x,\,y\right)=\tilde{v}\left(\,x_1,\,\frac{b-y}{\varepsilon}\,\right)\,\phi\left(\,\frac{b-y}{\delta}\,\right)\,$, где $\tilde{v}\left(\,x_1,\,\frac{b-y}{\varepsilon}\,\right)-$ погранслой вблизи части границы $\Gamma_1\colon\,y=b,\,\,0\leqslant x_1\leqslant a,$ который строится так же, как v. Остается построить погранслой вблизи левой стороны: $x=0,\,\,0\leqslant y\leqslant b.\,$ Для этого можно использовать методику пункта $3,\,\,$ а именно:

$$L_{\varepsilon}v \equiv Mv + \varepsilon^2 R_1 v, \quad Mv \equiv \varepsilon^2 \frac{\partial^2 v}{\partial x^2} + \frac{\partial v}{\partial x} - v, \quad R_1 v = \frac{\partial^2 v}{\partial y^2}.$$
 (4.52)

В первом приближении v определяем как функцию типа погранслоя из обыкновенного уравнения

$$Mv \equiv \varepsilon^2 \frac{\partial^2 v}{\partial x^2} + \frac{\partial v}{\partial x} - v = 0$$
 (4.53)

при граничном условии:

$$v|_{x=0} = -w_0(0, y) - v_1(0, y) - v_2(0, y) = \zeta(y). \tag{4.54}$$

Очевидно, $v = \zeta(y) e^{-\frac{\lambda x}{\epsilon^2}}$, $\lambda = \frac{1 + \sqrt{1 + 4\epsilon^2}}{2}$; $v_3 = \phi\left(\frac{x}{\delta}\right)v$. Если h имеет огра-

ниченные вторые производные в \overline{Q} (хотя бы по y), то $w_0(0,y)$ — также дважды дифференцируема. Функции v_1 и v_2 допускают производные по y до

 $^{^{1}}$) Если она не обращается в нуль в A и B, то в этих точках поведение невязки z, о которой речь идет ниже, оценивается с помощью барьеров, аналогично тому, как это сделано в \S 5.

второго порядка, так как v и \widetilde{v} удовлетворяют уравнению (4.49), а $\frac{\partial v}{\partial x}$ и $\frac{\partial v}{\partial x}$ существуют в силу наших условий. Отсюда следует, что и v_3 — дважды дифференцируема по y. Оценим теперь невязку $z=u_{\mathfrak{s}}-(w_0+v_1+v_2+v_3)$. Очевидно, $z|_{\Gamma}=0$. Далее, имеем:

$$\begin{split} L_{\varepsilon}\mathbf{z} &= L_{\varepsilon}u_{\varepsilon} - L_{\varepsilon}w_{0} - L_{\varepsilon}\left(v_{1} + v_{2}\right) - L_{\varepsilon}v_{3} = \\ &= -\varepsilon^{2}\Delta w_{0} - \varepsilon^{2}\frac{\partial^{2}\left(v_{1} + v_{2}\right)}{\partial x^{2}} - \varepsilon^{2}\frac{\partial^{2}v_{3}}{\partial v^{2}} + O\left(\varepsilon^{n}\right), \quad \textbf{(4.55)} \end{split}$$

причем в $O(\varepsilon^n)$ мы отнесли все члены, содержащие производные от множителей ψ , и, следовательно, равные нулю в $\frac{1}{3}$ δ -окрестности тех частей границы, где строились погранслои. Но вне этой окрестности функции v и их производные – любого порядка малости по ε . Как уже отмечалось выше, $\frac{\partial^2 (v_1 + v_2)}{\partial x^2} = O(1)$ и, очевидно, $\frac{\partial^2 v_3}{\partial y^2} = O(1)$ всюду, кроме окрестностей V_0 и V_b точек (0, 0) и (0, b) шириной $O(\varepsilon)$ (так как в v_3 входит множителем $\zeta(y)$ (см. (4.54)). Таким образом, $L_\varepsilon z = O(\varepsilon^2)$ вне V_0 и V_b .

Для оценки z вводим вспомогательные функции $B_1(x,y)=M_1e^{-\frac{x}{M\epsilon^2}}+$ + $\epsilon^2(M_2-M_3x)$ и $B_2(x,y)=M_1e^{-\frac{y}{M\epsilon}}+$ $\epsilon^2(M_2-M_3x)$. Так как при соответствующем подборе положительных постоянных M,M_1,M_2,M_3 $L_\epsilon(B_1\pm z)<<0$ и $(B_1\pm z)|_{\Gamma}>0$, то $B_1>|z|$ (i=1,2). Следовательно, $|z|\leqslant \min{(B_1,B_2)}$. Вне окрестностей точек (0,0) и (0,b) очевидно,

$$z = O\left(\varepsilon^2\right). \tag{4.56}$$

Применяя итерационные процессы, можно получить, так же как выше, асимптотику любого порядка, если параметры задачи достаточно гладкие.

В случае общего эллиптического уравнения (4.21) с коэффициентом ε^2 при старших производных, рассматриваемого в области Q, ограниченной снизу и сверху прямыми y=0 и y=b, которые образуют с кусками Γ^- и Γ^+ углы, отличные от 0 и π , погранслой можно построить аналогично тому, как это сделано выше. Во-первых, произведем замену переменных: $x'=\varphi(x,y), \quad y'=y,$ причем линии x'=0 отвечают границе Γ^- , а x'=a—границе Γ^+ ; $\frac{\partial \varphi}{\partial x} \gg \gamma_0^2 > 0$. В плоскости (x',y') область Q изобразится прямоугольником Q' ($0 \leqslant x' \leqslant a$, $0 \leqslant y' \leqslant b$), уравнение (4.21) приобретет вид

$$L'_{\varepsilon}u \equiv \varepsilon^{2} \left[\alpha \left(x', \ y' \right) \frac{\partial^{2}u}{\partial x'^{2}} + 2\beta \left(x', \ y' \right) \frac{\partial^{2}u}{\partial x'\partial y'} + \gamma \left(x', \ y' \right) \frac{\partial^{2}u}{\partial y'^{2}} + \delta \left(x', \ y' \right) \frac{\partial u}{\partial y'} + \right.$$

$$\left. + \omega \left(x', \ y' \right) \frac{\partial u}{\partial x'} + g \left(x', \ y' \right) u \right] + \eta \left(x', \ y' \right) \frac{\partial u}{\partial x'} - f \left(x', \ y' \right) u =$$

$$= h \left(x', \ y' \right); \quad \eta = \frac{\partial \varphi}{\partial x} . \quad (4.57)$$

Для построения погранслоя v вблизи y'=0 представляем коэффициенты уравнения (4.57) по формуле Тейлора: $\alpha(x', y') = \alpha(x') + \alpha_1(x') \, y' + \ldots$, $\eta(x', y') = \eta(x') + \eta_1(x') \, y' + \ldots$, $f(x', y') = f(x') + f_1(x') \, y' + \ldots$, делаем в (4.57) замену $\frac{y'}{z} = t$ и приближенно решаем уравнение

$$\begin{split} L_{\varepsilon}'v &\equiv M_{0}v + \varepsilon R_{1}v + \ldots = 0; \\ M_{0}v &\equiv \gamma \left(x'\right) \frac{\partial^{2}v}{\partial t^{2}} + \eta \left(x'\right) \frac{\partial v}{\partial x'} - f\left(x'\right)v. \end{split}$$

В первом приближении достаточно решить в области x' < a, y' > 0 уравнение

$$M_0 v \equiv \gamma(x') \frac{\partial^2 v}{\partial t^2} + \eta(x') \frac{\partial v}{\partial x'} - f(x') v = 0$$
(4.58)

при граничных условиях

$$v|_{t=0} = v|_{v'=0} = -w_0(x', 0), v|_{x'=a} = 0.$$
 (4.59)

Искомое решение в силу того, что коэффициенты уравнения (4.58) зависят лишь от x', играющего в (4.58) роль времени, выписывается в явном виде, аналогичном (4.50). Далее, строим функции v_1 , v_2 , v_3 так же, как выше, и получаем асимптотику вида (4.56), однако вместо $O(\varepsilon^2)$ мы сейчас получим в аналогичной формуле лишь $O(\varepsilon)$, так как в (4.57) имеются члены с первыми производными по y'.

Аналогичные явления параболического погранслоя возникают в *n*-мерном случае, когда граница Г содержит кусок характеристического многообразия.

§ 5. Доказательство теорем 6—9

1. Оценка невязки z на основе энергетического неравенства. Семейство решений u_{ε} задачи A_{ε} (4.21), (4.22) равномерно ограничено (относительно ε) по норме в \mathcal{L}_2 , точнее,

$$\varepsilon \left(\left\| \frac{\partial u}{\partial x} \right\|^2 + \left\| \frac{\partial u}{\partial y} \right\|^2 \right) + \|u\|^2 \leqslant C \left(L_{\varepsilon} u, u \right) \leqslant C_1 \|h\|^2, \tag{5.1}$$

т. е. задача A_{ϵ} равномерно разрешима. Действительно, решения u_{ϵ} задачи A_{ϵ} имеют первые и вторые производные, принадлежащие \mathcal{L}_2 (см. [33], [34]) и, следовательно, для $u=u_{\epsilon}$ имеем:

$$(h, u) = (L_{\epsilon}u, u) = -\epsilon \int_{Q} \left[a \left(\frac{\partial u}{\partial x} \right)^{2} + 2b \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} + c \left(\frac{\partial u}{\partial y} \right)^{2} + \left(\frac{\partial a}{\partial x} - d \right) \frac{\partial u}{\partial x} u + \left(\frac{\partial c}{\partial y} - e \right) \frac{\partial u}{\partial y} u + 2 \frac{\partial b}{\partial y} \frac{\partial u}{\partial x} u - g u^{2} \right] dx dy + \int_{Q} \int_{Q} \frac{\partial u}{\partial x} u dx dy - \int_{Q} \int_{Q} f u^{2} dx dy, \quad (5.2)$$

$$\int_{Q} \frac{\partial u}{\partial x} u dx dy = 0.$$

В силу эллиптичности оператора (4.19) в \overline{Q} имеем:

$$a(x, y) \left(\frac{\partial u}{\partial x}\right)^{2} + 2b(x, y) \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} + c(x, y) \left(\frac{\partial u}{\partial y}\right)^{2} \geqslant \omega^{2} \left[\left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2}\right], \quad (5.3)$$

5 Успехи матем. наук, т. XII, вып. 5

где $\omega^2 > 0$. Пользуясь оценкой скалярных произведений:

$$\left| \left(\left(\frac{\partial a}{\partial x} + 2 \frac{\partial b}{\partial y} - d \right) \frac{\partial u}{\partial x}, u \right) + \left(\left(\frac{\partial c}{\partial y} - e \right) \frac{\partial u}{\partial y}, u \right) \right| \leqslant \frac{1}{2} \omega^2 \left(\left\| \frac{\partial u}{\partial x} \right\|^2 + \left\| \frac{\partial u}{\partial y} \right\|^2 \right) + M \|u\|^2, \tag{5.3'}$$

мы из (5.2) и (5.3) выводим:

$$\varepsilon \cdot \frac{\omega^2}{2} \left(\left\| \frac{\partial u}{\partial x} \right\|^2 + \left\| \frac{\partial u}{\partial y} \right\|^2 \right) + (\alpha^2 - 2M\varepsilon) \|u\|^2 \leqslant |(h, u)| \leqslant \frac{1}{\alpha^2} \|h\|^2 + \frac{\alpha^2}{4} \|u\|^2$$

$$(|g| \leqslant M; f \geqslant \alpha^2).$$

Взяв є столь малым, чтобы $2M\varepsilon \leqslant \min\left(\frac{\alpha^2}{2}, \frac{\omega^2}{2}\right)$, мы отсюда получим (5.1).

Допустим теперь, что выполнены условия, позволяющие провести итерационные процессы, описанные в п.3 § 4, т. е. пусть параметры задачи имеют гладкость порядка $\{2\,(m+1)$. Тогда в любой подобласти $\widetilde{Q}=Q-V\left(A\right)-V\left(B\right)$ для невязки

$$z = u_{\varepsilon} - \sum_{i=0}^{m} \varepsilon^{i} w_{i} - \sum_{r=0}^{m+1} \varepsilon^{r} v_{r} = u_{\varepsilon} - \widetilde{w} - \widetilde{v}$$
 (5.4')

имеем (см. (4.39'))

$$L_{\varepsilon}z = \varepsilon^{m+1}g_m = O(\varepsilon^{m+1}). \tag{5.4}$$

Пусть $\zeta(y)$ — гладкая функция, причем $\zeta(y)\equiv 1$ при $y_0\dotplus 2\delta\leqslant y\leqslant y_1-2\delta$ и $\zeta(y)\equiv 0$ для $y\geqslant y_1-\delta$ и для $y\leqslant y_0+\delta$. Имеем согласно (5.4), (4.19) и (4.20):

$$L_{\varepsilon}(\zeta z) = \zeta(y) O(\varepsilon^{m+1}) + \varepsilon \left(2b\frac{\partial \zeta}{\partial y}\frac{\partial z}{\partial x} + 2c\frac{\partial \zeta}{\partial y}\frac{\partial z}{\partial y} + c\frac{\partial^{2}\zeta}{\partial y^{2}}z + e\frac{\partial \zeta}{\partial y}z\right) = h_{1}. \quad (5.5)$$

Так как в любой подобласти \widetilde{Q} функции w_i $(i=0,\ 1,\ \dots,\ m)$ дифференцируемы вплоть до границы \widetilde{Q} , то $\|\widetilde{w}\|_{W_2^{(1)}(\widetilde{Q})} = O(1)$. Далее, используя формулы для v_i , находим, что $\|\widetilde{v}\|_{W_2^{(1)}(\widetilde{Q})}^2 \leqslant C\Big(\left\|\frac{\partial \widetilde{v}}{\partial \rho}\right\|^2 + \left\|\frac{\partial \widetilde{v}}{\partial \varphi}\right\|^2 + \|\widetilde{v}\|^2\Big) = O(\varepsilon^{-1})$, а из оценки (5.1) следует $\|u_\varepsilon\|_{W_2^{(1)}} = O(\varepsilon^{-\frac{1}{2}})$. Отсюда для $z = u_\varepsilon - \widetilde{w} - \widetilde{v}$

$$\left\|\frac{\partial z}{\partial x}\right\|_{\widetilde{G}} + \left\|\frac{\partial z}{\partial y}\right\|_{\widetilde{G}} + \left\|z\right\|_{\widetilde{G}} = O\left(\varepsilon^{-\frac{1}{2}}\right)$$

и, значит,

получим:

$$||h_1|| = O(\varepsilon^{\frac{1}{2}}).$$
 (5.6)

Применяя теперь энергетическую оценку (5.1) к функции ζz , получим

$$\varepsilon\left(\,\left\|\frac{\partial\left(\zeta z\right)}{\partial x}\,\right\|^{2}+\left\|\,\frac{\partial\left(\zeta z\right)}{\partial y}\,\right\|^{2}\,\right)+\left\|\,\zeta z\,\right\|^{2}\leqslant C\,\|\,\mathbf{\tilde{h}}_{1}\,\|^{2}=O\left(\varepsilon\right)$$

и, следовательно, по любой подобласти вида $\widetilde{Q}=Q-V\left(A\right)-V\left(B\right)$

$$\left\| \frac{\partial z}{\partial x} \right\|_{\widetilde{Q}}^{2} + \left\| \frac{\partial z}{\partial y} \right\|_{\widetilde{Q}}^{2} = O(1), \quad \left\| z \right\|_{\widetilde{Q}}^{2} = O(\epsilon). \tag{5.7}$$

Но отсюда следует сразу, что правая часть h_1 уравнения (5.5) имеет норуу

O (arepsilon) по области вида \widetilde{Q} и, значит, применяя опять энергетическое нервенество (5.1), получим:

$$\varepsilon \left(\left\| \frac{\partial \left(\zeta z \right)}{\partial x} \right\|^2 + \left\| \frac{\partial \left(\zeta z \right)}{\partial y} \right\|^2 \right) + \left\| \zeta z \right\|^2 = O\left(\varepsilon^2 \right),$$

и отсюда

$$\left\|\frac{\partial z}{\partial x}\right\|_{\widetilde{Q}}^{2}+\left\|\frac{\partial z}{\partial y}\right\|_{\widetilde{Q}}^{2}=O\left(\varepsilon\right),\quad \left\|z\right\|_{\widetilde{Q}}^{2}=O\left(\varepsilon^{2}\right).$$

Применяя последовательно такое же рассуждение, получим:

$$\left\|\frac{\partial z}{\partial x}\right\|_{\widetilde{Q}}^{2} + \left\|\frac{\partial z}{\partial y}\right\|_{\widetilde{Q}}^{2} = O\left(\varepsilon^{2m+1}\right), \quad \left\|z\right\|_{\widetilde{Q}}^{2} = O\left(\varepsilon^{2m+2}\right). \tag{5.8}$$

Таким образом, вне окрестностей точек A и B (в которых, как было указано выше, $\frac{\partial z}{\partial y}$, как правило, имеет особенности) в случае достаточной гладкости параметров задачи для невязки

$$z = u_{\varepsilon} - \sum_{j=0}^{m} \varepsilon^{j} w_{j} - \sum_{r=0}^{m+1} \varepsilon^{r} v_{r}$$

имеют место оценки (5.8), характеризующие в метрике \mathcal{L}_2 малость z и ее первых производных, и, следовательно, часть теоремы 6 доказана (см. (4.41) и первую из оценок (4.42)).

Замечание. Можно показать, что оценки (5.8) верны также, если h имеет производные до порядка 2m+1 и при несколько меньших условиях на гладкость коэффициентов, но мы на этом останавливаться не будем.

2. Оденки производных высших порядков от невязки z. Оценка невязки z во внутренней подобласти. В любой внутренней подобласти $Q_1, \overline{Q_1} \subset Q$, при достаточно малых $\varepsilon, z = u_\varepsilon - \sum_{j=0}^m \varepsilon^j w_j$,

так как $\sum_{r=0}^{m+1} \varepsilon^r v_r \equiv 0$ для $P \in Q_1$. Согласно (4.18) и (4.34)

$$L_{\varepsilon}z = L_{\varepsilon} \left(u_{\varepsilon} - \sum_{i=0}^{m} \varepsilon^{i} w_{j}\right) = -\varepsilon^{m+1} L_{2} w_{m}. \tag{5.9}$$

Допустим, что $h \in W_2^{(s)}$, где $s = 2 \, (m+1) + p$. Тогда в Q_1 $L_2 w_m \in W_2^{(p)}$, $u_\varepsilon \in W_2^{(s+2)}$ (см. [44], [34]), $\sum_{j=0}^m \varepsilon^j w_j \in W_2^{(p+2)}$. Эти дифференциальные свойства позволяют нам ниже почленно дифференцировать получающиеся уравнения. Пусть $\widetilde{\zeta}(P)$ —гладкая функция, обращающаяся в 1 в Q_1 и равная нулю вблизи Γ . Тогда, пользуясь (5.9), найдем:

$$L_{\varepsilon}(\widetilde{\zeta}z) = -\widetilde{\zeta}\varepsilon^{m+1}L_{2}\omega_{m} + \varepsilon\left(2a\frac{\partial\widetilde{\zeta}}{\partial x}\frac{\partial z}{\partial x} + \dots\right) + z\frac{\partial\widetilde{\zeta}}{\partial x}.$$
 (5.10)

Продифференцируем обе части (5.10) по x и обозначим $\widetilde{\zeta}z=\widetilde{z}$:

$$L_{\varepsilon}\left(\frac{\partial \widetilde{z}}{\partial x}\right) = -\frac{\partial}{\partial x}\left[\widetilde{\zeta}\varepsilon^{m+1}L_{2}w_{m}\right] + \varepsilon\left(\frac{\partial}{\partial x}\left[2a\frac{\partial\widetilde{\zeta}}{\partial x}\frac{\partial z}{\partial x}\right] + \dots\right) + \frac{\partial}{\partial x}\left[z\frac{\partial\widetilde{\zeta}}{\partial x}\right] - \frac{\partial L_{\varepsilon}}{\partial x}\widetilde{z},$$
(5.14)

гле.

$$\frac{\partial L_{\epsilon}}{\partial x} = \epsilon \left(\frac{\partial a}{\partial x} \frac{\partial^2}{\partial x^2} + \dots \right) - \frac{\partial f}{\partial x}.$$

Умножим обе части (5.11) скалярно на $\frac{\partial \widetilde{z}}{\partial x}$ и, пользуясь оценкой (5.1) и интегрированием по частям, получим:

$$\varepsilon \left(\left\| \frac{\partial}{\partial x} \left(\frac{\partial \widetilde{z}}{\partial x} \right) \right\|^{2} + \left\| \frac{\partial}{\partial y} \left(\frac{\partial \widetilde{z}}{\partial x} \right) \right\|^{2} \right) + \left\| \frac{\partial \widetilde{z}}{\partial x} \right\|^{2} \leqslant C \left(L_{\varepsilon} \left(\frac{\partial \widetilde{z}}{\partial x} \right), \frac{\partial \widetilde{z}}{\partial x} \right) = \\
= C \left\{ \left(\widetilde{\zeta} \varepsilon^{m+1} L_{2} w_{m}, \frac{\partial^{2} \widetilde{z}}{\partial x^{2}} \right) - \varepsilon \left[\left(2a \frac{\partial \widetilde{\zeta}}{\partial x} \frac{\partial z}{\partial x}, \frac{\partial^{2} \widetilde{z}}{\partial x^{2}} \right) + \dots \right] + \\
+ \left(\frac{\partial}{\partial x} \left(z \frac{\partial \widetilde{\zeta}}{\partial x} \right), \frac{\partial \widetilde{z}}{\partial x} \right) + \left(\frac{\partial L_{\varepsilon} \widetilde{z}}{\partial x}, \frac{\partial \widetilde{z}}{\partial x} \right) \right\}. \quad (5.12)$$

С помощью интегрирования по частям придадим последнему слагаемому следующий вид:

$$-\left(\frac{\partial L_{\varepsilon}}{\partial x}\widetilde{z}, \frac{\partial \widetilde{z}}{\partial x}\right) = \varepsilon \left[2\left(\frac{\partial^{2} a}{\partial x^{2}}\frac{\partial \widetilde{z}}{\partial x}, \frac{\partial \widetilde{z}}{\partial x}\right) + \dots\right] + \left(\frac{\partial f}{\partial x}\widetilde{z}, \frac{\partial \widetilde{z}}{\partial x}\right).$$

Применяя теперь к каждому из слагаемых правой части (5.12) элементарное неравенство $(F, G) \leqslant \frac{1}{2} \left(\frac{1}{\delta} \|F\|^2 + \delta \|G\|^2 \right)$, получим:

$$\begin{split} & \varepsilon \left(\left\| \frac{\partial}{\partial x} \left(\frac{\partial \widetilde{\mathbf{z}}}{\partial x} \right) \right\|^2 + \left\| \frac{\partial}{\partial y} \left(\frac{\partial \widetilde{\mathbf{z}}}{\partial x} \right) \right\|^2 \right) + \left\| \frac{\partial \widetilde{\mathbf{z}}}{\partial x} \right\|^2 \leqslant C \left\{ \frac{1}{2} \, \delta^{-1} \, \varepsilon^{2m+1} \, \| \, \widetilde{\zeta} L_2 w_m \, \|^2 + \right. \\ & \left. + \frac{1}{2} \, \delta \varepsilon \right\| \frac{\partial^2 \widetilde{\mathbf{z}}}{\partial x^2} \right\|^2 + \varepsilon \left[\, \frac{1}{2} \, \delta^{-1} \, 4M^2 \, \left\| \frac{\partial \widetilde{\zeta}}{\partial x} \frac{\partial z}{\partial x} \right\|^2 + \frac{1}{2} \, \delta \left\| \frac{\partial^2 \widetilde{\mathbf{z}}}{\partial x^2} \right\|^2 + \dots \, \right] + \delta^{-1} \, \frac{1}{2} \, \left\| \frac{\partial}{\partial x} \left(z \, \frac{\partial \widetilde{\zeta}}{\partial x} \right) \right\|^2 + \\ & \left. + \frac{1}{2} \, \delta \left\| \frac{\partial \widetilde{\mathbf{z}}}{\partial x} \right\|^2 + \varepsilon \left[\, M^2 \, \left\| \frac{\partial \widetilde{\mathbf{z}}}{\partial x} \right\|^2 + \dots \, \right] \right\} + \frac{1}{2} \, \delta^{-1} M^2 \, \| \, \widetilde{\mathbf{z}} \, \|^2 + \frac{1}{2} \, \delta \left\| \frac{\partial \widetilde{\mathbf{z}}}{\partial x} \right\|^2 \, , \end{split}$$

где

$$M = \max \left(\left| a \right|, \left| \frac{\partial^2 a}{\partial x^2} \right|, \ldots, \left| \frac{\partial f}{\partial x} \right| \right).$$

Взяв $\mathfrak d$ достаточно малым, перенеся члены с множителем $\mathfrak d$ влево и пользуясь доказанной оценкой (5.8) ($\mathfrak T=0$ вне $\widetilde Q$), получим:

$$\varepsilon \left(\left\| \frac{\partial}{\partial x} \left(\frac{\partial \widetilde{z}}{\partial x} \right) \right\|^2 + \left\| \frac{\partial}{\partial y} \left(\frac{\partial \widetilde{z}}{\partial x} \right) \right\|^2 \right) + \left\| \frac{\partial \widetilde{z}}{\partial x} \right\|^2 = O\left(\varepsilon^{2m+1}\right),$$

или, так как $\widetilde{\zeta}\equiv 1$ в Q_1 ,

$$\varepsilon \left(\left\| \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) \right\|_{Q_{1}}^{2} + \left\| \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) \right\|_{Q_{1}}^{2} \right) + \left\| \frac{\partial z}{\partial x} \right\|_{Q_{1}}^{2} = O(\varepsilon^{2m+1}). \quad (5.13)$$

Совершенно аналогичную оценку мы получим, если продифференцируем (5.40) по y. Дифференцируя последовательно (5.10) по x и по y и используя оценки вида (5.13), мы получим следующую оценку:

$$\varepsilon \left(\left\| \frac{\partial}{\partial x} \left(D^{j} z \right) \right\|_{Q_{1}}^{2} + \left\| \frac{\partial}{\partial y} \left(D^{j} z \right) \right\|_{Q_{1}}^{2} \right) + \left\| D^{j} z \right\|_{Q_{1}}^{2} = O\left(\varepsilon^{2m+2-j}\right) \leqslant M \varepsilon^{2m+2-j}, (5.14)$$

где D^{j} — оператор любой частной производной порядка $j,\ j\leqslant p+1.$

Замечание. Заметим, что для получения оценки (5.14) при j=p+1 мы, вообще говоря, не сумеем (p+1)-й раз продифференцировать (5.10), так как L_2w_m имеет лишь производные до порядка p. Это затруднение

можно обойти, предположив вначале, что $h = h_n \in W_2^{(s+1)}$, s = 2(m+1) + p, $z = z_n$ —соответствующая h_n невязка, причем $h_n \Rightarrow h$ в метрике $W_2^{(s)}$.

Далее легко видеть, что константа M в (5.14) зависит лишь от норм $\|h_n\|_{W_2^{(s)}}$ и, следовательно, возможно в оценке (5.14), записанной для z_n и h_n , перейти к пределу при $n \to \infty$, не изменяя M.

3. Оценка невязки z в граничной полоске области. Оценим теперь высшие производные от невязки в пограничной полоске, не примыкающей к точкам A и B. Пусть полоска Q^1 ограничена кривыми: $\Gamma^-(\rho=0)$, $\rho=\eta$, $\phi=\phi_1$, $\phi=\phi_2$, $0<\phi_1<\phi_2<\Phi$, где $\phi=0$ - координата точки A на Γ , а Φ — координата точки B. Будем считать, что в областях вида Q^1 линии $\phi=$ const совпадают с кусками характеристик y= const; через Q^2 будем обозначать аналогичную область вблизи Γ^+ .

Во-первых, докажем, что для любого $\varepsilon > 0$ справедлива оценка 1)

$$\varepsilon \left(\left\| \frac{\partial^2 z}{\partial x^2} \right\|_{Q^i} + \left\| \frac{\partial^2 z}{\partial x \partial y} \right\|_{Q^i} + \left\| \frac{\partial^2 z}{\partial y^2} \right\|_{Q^i}^2 \right) + \left\| \frac{\partial z}{\partial x} \right\|_{Q^i} + \left\| z \right\|_{Q^i} = O\left(\varepsilon^{m+1}\right). \tag{5.15}$$

Оператор L_{ϵ} запишем в Q^{1} в координатах (р, φ):

$$L_{\varepsilon}u \equiv \varepsilon \left(\alpha \left(\rho, \varphi\right) \frac{\partial^{2}u}{\partial \rho^{2}} + 2\beta \left(\rho, \varphi\right) \frac{\partial^{2}u}{\partial \rho \partial \varphi} + \gamma \left(\rho, \varphi\right) \frac{\partial^{2}u}{\partial \varphi^{2}} + \dots \right) + \delta \left(\rho, \varphi\right) \frac{\partial u}{\partial \rho} - fu,$$

причем отметим, что так как линии φ = const совпадают с y = const, $\frac{\partial \varphi}{\partial x}$ = 0, и, следовательно, коэффициент z при $\frac{\partial u}{\partial \varphi}$ в (4.28) равен нулю. Пусть $\zeta = \zeta(\rho, \varphi)$ — гладкая функция, равная 1 в некоторой малой окрестности точки (0, φ_0), лежащей внутри Γ^- , и равная нулю вне несколько большей окрестности. Например, $\zeta = \psi\left(\frac{\rho}{3\delta}\right)\psi\left(\frac{|\varphi-\varphi_0|}{3\delta}\right)$. Для $z = u_z - \widetilde{w} - \widetilde{v}$ согласно (5.4), (5.4') и (4.38), (4.39) имеем:

$$L_{\varepsilon}z = \varepsilon^{m+1}g_m(\rho, \varphi, \varepsilon), \tag{5.16}$$

где

$$g_m = -L_2 w_m - (R_{m+2} v_0 + R_{m+1} v_1 + \ldots + R_1 v_{m+1}) + O(\epsilon).$$

Функция g_m выражается через функцию w_m , не зависящую от ε , и с помощью функций v_0 , v_1 , ..., v_{m+1} , имеющих характер погранслоя, и, следовательно, сосредоточенных лишь в областях вида Q^1 и равных нулю в областях вида Q^2 .

Функция 🗘 удовлетворяет уравнению

$$L_{\varepsilon}(\zeta z) = \zeta \varepsilon^{m+1} g_m + \varepsilon \left(2\alpha \frac{\partial \zeta}{\partial \rho} \frac{\partial z}{\partial \rho} + \dots \right) + \frac{\partial \zeta}{\partial \rho} \dot{c} z = h_1.$$
 (5.17)

¹) Такого типа оценки для уравнений второго порядка, не содержащих параметры, были выведены С. Н. Бернитейном [31], [32] для случая двух независимых переменных и О. А. Ладыженской [33], [34] для n переменных, для уравнений высших порядков—О. В. Гусевой [44] (см. также Ниренберг [45]), [48]). Такие же оценки с заменой норм в \mathcal{L}_2 пормами в \mathcal{L}_p были установлены А. И. Кошелевым [46], [47] (см. также Ниренберг [48]).

Приводимые ниже выводы оценок (5.15) п (5.32), а также аналогичных оценок для решений уравнений высших порядков (см. теорему 11), отчасти близки к соответствующим рассуждениям О. В. Гусевой [44].

Введем обозначения $\widetilde{z}=\zeta z$, L^0_ε — оператор, полученный из L_ε заменой его коэффициентов их значениями в точке $(\rho_0,\ \varphi_0),\ \rho_0<\delta$, т. е. для $\rho<\eta$

$$L^0_{\epsilon}(\widetilde{z}) \equiv \epsilon \left(\alpha_0 \frac{\partial^2 z}{\partial \rho^2} + \dots \right) + \delta_0 \frac{\partial z}{\partial \rho} - f_0 z,$$

где
$$\alpha_0=\alpha$$
 ($\rho_0,\ \phi_0$), ..., $\delta_0=\delta$ ($\rho_0,\ \phi_0$), ..., и запишем (5.17) в виде
$$L_\varepsilon^0\widetilde{z}=h_1+(L_\varepsilon^0-L_\varepsilon)\widetilde{z}=h_2. \tag{5.18}$$

Мы оценим сейчас \widetilde{z} через h_2 . Для этого будем считать функции \widetilde{z} и h_2 продолженными нулем в полосах: $\varphi_0 + 3\delta \leqslant \varphi < +\infty$, $-\infty < \varphi \leqslant \varphi_0 - 3\delta$, $3\delta \leqslant \varphi < +\infty$, и применим преобразование Фурье по φ к обеим частям (5.18):

$$\widetilde{L}_{\rm e}^{\rm o}Z \equiv \varepsilon \left(\alpha_0 \frac{\partial^2 Z}{\partial \rho^2} + 2\beta_0 (i\lambda) \frac{\partial Z}{\partial \rho} - \gamma_0 \lambda^2 Z + \dots \right) + \delta_0 \frac{\partial Z}{\partial \rho} - f_0 Z = H_2, \quad (5.19)$$

где

$$Z(\rho, \lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-i\lambda\varphi} \widetilde{z}(\rho, \varphi) d\varphi, \quad H_2(\rho, \lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-i\lambda\varphi} h_2(\rho, \varphi) d\varphi. \quad (5.20)$$

Уравнение (5.19) является обыкновенным дифференциальным уравнением по ρ с постоянными коэффициентами, содержащими параметр λ , причем в силу того, что

$$\widetilde{z}|_{\varphi=0}=0$$
 и $\widetilde{z}\equiv 0$ для $arrho\geqslant 3\delta$,

имеем

$$Z|_{\rho=0}=0$$
 и $Z\equiv 0$ для $\rho\geqslant 3\delta$. (5.21)

Представив в явном виде с помощью соответствующей функции Грина $G(\rho,\,\xi,\,\lambda)^{\,1})$ Z через H_2 : $Z=\int G(\rho,\,\xi;\,\lambda)\,H_2(\xi)\,d\xi$, можно вывести для малых воценку

$$\varepsilon^{2}\left(\left\|\frac{\partial^{2}Z}{\partial\rho^{2}}\right\|_{\rho}^{2}+\lambda^{2}\left\|\frac{\partial Z}{\partial\rho}\right\|_{\rho}^{2}+\lambda^{4}\left\|Z\right\|_{\rho}^{2}\right)+\left\|\frac{\partial Z}{\partial\rho}\right\|_{\rho}^{2}+\left\|Z\right\|_{\rho}^{2}\leqslant C\left\|H_{2}\right\|_{\rho}^{2},\quad(5.22)$$

где $\|\ \|_2$ означает норму, взятую только по ρ в \mathcal{L}_2 (0, 3 δ), а C — константа, которую можно так выбрать, чтобы она не зависела от λ , ε и от выбора точки (ρ_0 , φ_0), если $0 < \delta_0 < \varphi_0 < \Phi - \delta_0$, где δ_0 — фиксировано. Интегрируя по λ обе части (5.22) и применяя равенство Парсеваля, получим:

$$\|\widetilde{z}\|_{\varepsilon}^{2} \equiv \varepsilon^{2} \left(\left\| \frac{\partial^{2}\widetilde{z}}{\partial \rho^{2}} \right\|^{2} + \left\| \frac{\partial^{2}\widetilde{z}}{\partial \rho \partial \varphi} \right\|^{2} + \left\| \frac{\partial^{2}\widetilde{z}}{\partial \varphi^{2}} \right\|^{2} \right) + \left\| \frac{\partial\widetilde{z}}{\partial \rho} \right\|^{2} + \|\widetilde{z}\|^{2} \leqslant C \|h_{2}\|^{2} \leqslant 2C \left(\|h_{1}\|^{2} + \|(L_{\varepsilon}^{0} - L_{\varepsilon})\widetilde{z}\|^{2} \right).$$

$$(5.21')$$

Так как

$$(L_{\varepsilon}^{0}-L)\widetilde{z}=\varepsilon\left[\left(\alpha\left(\rho_{0},\,\varphi_{0}\right)-\alpha\left(\rho,\,\varphi\right)\right)\frac{\partial^{2}\widetilde{z}}{\partial\rho^{2}}+\ldots\right]+\ldots-\left[f\left(\rho_{0},\,\varphi_{0}\right)-f\left(\rho,\,\varphi\right)\right]\widetilde{z}$$

и $\widetilde{\mathbf{z}} = \zeta \mathbf{z}$ обращается в нуль для $\rho \geqslant 3\delta, \ | \mathbf{\varphi} - \mathbf{\varphi}_0 | \geqslant 3 \delta,$ то

$$\|(L_{\varepsilon}^{0} - L_{\varepsilon})\widetilde{z}\|^{2} \leqslant C_{1}\omega^{2}(3\delta) \|\widetilde{z}\|_{\varepsilon}^{2}, \tag{5.22'}$$

¹⁾ Выбор второго граничного условия для построения функции Грина G не существен, так как $\mathbf{Z}\equiv 0$ при $\rho\geqslant 3$ 6.

где ω (δ) — максимальная осцилляция в Q_{η} коэффициентов операторов L_2 и L_1 $(L_{\epsilon} = \epsilon L_{2} + L_{1})$, когда аргументы (ρ, ϕ) отклоняются на величину δ. Очевидно, $\omega \longrightarrow 0$ при $\delta \longrightarrow 0$. Взяв δ столь малым, чтобы $2CC_1\omega^2 \leqslant \frac{1}{2}$, мы получим из (5.21') и (5.22')

 $\|\tilde{z}\|_{\epsilon}^{2} \leq 4C \|h_{1}\|^{2} = O(\epsilon^{2m+2}),$

причем последнее равенство мы написали на основании (5.17) и ранее установленных оценок (5.8) для норм $D^1 z$ и z, взятых по подобластям вида $\widetilde{Q}=Q-V\left(A\right) -V\left(B\right) .$ Теперь уже легко вывести оценки (5.15) во всей области Q^{1} («ширина»

 Q^1 равна δ , $0 \leqslant \rho \leqslant \delta$). Пусть $\widetilde{\zeta}(\rho, \varphi)$ —гладкая функция, равная единице на Q^1 и нулю вне несколько большей области и представимая в виде $\widetilde{\zeta} \equiv \zeta_1 + \ldots + \zeta_r$, где ζ_i — такие же функции, как ζ , т. е. гладкие функции, со столь малыми носителями, при которых справедлива оценка (5.23). Тогда

получим для $\overline{z} = \widetilde{\zeta}z = \sum_{i=1}^{r} \zeta_{i}z = \sum_{i=1}^{r} \widetilde{z}_{i}$, пользуясь (5.17):

$$\|\overline{z}\|_{\epsilon}^{2} \leqslant C_{2} \sum_{i=1}^{r} \|\widetilde{z}_{i}\|_{\epsilon}^{2} \leqslant C_{3} \sum_{i=1}^{r} \|h_{i}\|^{2} = O(\epsilon^{2m+2}),$$
 (5.24)

где h_i совпадает с правой частью (5.17), в которой $\zeta=\zeta_i$. Так как $\widetilde{\zeta}\equiv 1$ в Q^1 , то из (5.24) выводим, что

$$||z||_{\epsilon, Q^1}^2 = O(\epsilon^{2m+2}),$$
 (5.25)

где $\|z\|_{\varepsilon, Q^1}^2$ определяется с помощью левой части (5.21'), в которой нормы берутся по Q^1 . Возвращаясь от координат (ρ, φ) к координатам (x, y)и используя для оценки норм первых производных ранее выведенные оценки (5.8), мы получим (5.15).

Очевидно, что для областей типа Q^2 это доказательство остается в силе. Так как по любой внутренней подобласти оценка (5.15), как было показано в п. 2, имеет место, то она справедлива также в любой подобласти типа \hat{Q} .

Перейдем теперь к оценке производных высшего порядка от z. Для этого допустим, что выполнены такие условия гладкости параметров задачи, которые позволяют обе части (5.17) дифференцировать по р и ф p раз, т. е. параметры задачи имеют гладкость 2(m+1)+p. Заменим в (5.17) ζ на $\widetilde{\zeta}$, положим $\widetilde{\zeta}z=\overline{z}$ и продифференцируем обе части (5.17) по φ :

$$L_{\varepsilon}\left(\frac{\partial \overline{z}}{\partial \varphi}\right) = \varepsilon^{m+1} \frac{\partial}{\partial \varphi} \left(\overline{\zeta}g_{m}\right) + \varepsilon \left(2 \frac{\partial}{\partial \varphi} \left[\alpha \frac{\partial \overline{\zeta}}{\partial \rho} \frac{\partial z}{\partial \rho}\right] + \dots\right) + \frac{\partial}{\partial \varphi} \left(\frac{\partial \overline{\zeta}}{\partial \rho} \dot{\omega}z\right) - \frac{\partial L_{\varepsilon}}{\partial \varphi} z = O\left(\varepsilon^{m+\frac{1}{2}}\right), \quad (5.26)$$

последнее равенство мы написали на том основании, $rac{\partial}{\partial arphi}\left(\widetilde{\zeta}g_{\emph{m}}
ight)=O\left(1
ight)$, так как дифференцирование по arphi не повышает порядка логранслоев, входящих в g_m , а остальные члены имеют порядок $O\left(\mathbf{e}^{m+\frac{1}{2}}\right)$

на основании оценок (5.25) и (5.8). Применяя к (5.26) оценку (5.25), мы получим:

$$\left\| \frac{\partial \tilde{z}}{\partial \varphi} \right\|_{\varepsilon}^{2} = O\left(\varepsilon^{2m+1}\right). \tag{5.27}$$

Аналогично получим, что

$$\left\| \frac{\partial^{i} \overline{z}}{\partial \varphi^{i}} \right\|_{\varepsilon}^{2} = O\left(\varepsilon^{2m+2-i}\right) \quad (0 \leqslant i \leqslant p). \tag{5.28}$$

Для получения оценок других производных продифференцируем (5.17) (после замены ζ на $\widetilde{\zeta}$) по ρ . Тогда из полученного уравнения найдем:

$$\varepsilon^{2} \left\| \frac{\partial^{3} \overline{z}}{\partial \rho^{3}} \right\|^{2} \leq C \left(\left\| \frac{\partial \overline{z}}{\partial \varphi} \right\|_{\varepsilon}^{2} + \left\| \overline{z} \right\|_{\varepsilon}^{2} + \varepsilon^{2(m+1)} \left\| \frac{\partial \left(\widetilde{\zeta} g_{m} \right)}{\partial \rho} \right\|^{2} + \varepsilon^{2} \left\| 2 \frac{\partial}{\partial \rho} \left(\alpha \frac{\partial \widetilde{\zeta}}{\partial \rho} \frac{\partial z}{\partial \rho} \right) + \dots \right\|^{2} \right). \tag{5.29}$$

Теперь уже следует различать случан области Q^1 и Q^2 , так как в них по-разному ведет себя $\frac{\partial}{\partial \rho}(\widetilde{\zeta}g_m)$. Действительно, в g_m входят функции типа погранслоя, сосредоточенные вблизи Γ^- , и, следовательно,

$$\left\| \frac{\partial^{k}}{\partial \rho^{k}} \left(\widetilde{\zeta} g_{m} \right) \right\|_{\widetilde{\zeta}^{1}} = O\left(\frac{1}{\frac{k-\frac{1}{2}}{\varepsilon}} \right)^{1}, \quad \left\| \frac{\partial^{k}}{\partial \rho^{k}} \left(\widetilde{\zeta} g_{m} \right) \right\|_{\widetilde{\zeta}^{2}} = O\left(1 \right), \tag{5.30}$$

где \widetilde{Q}^1 и \widetilde{Q}^2 — области типа Q^1 и Q^2 . Пользуясь оценками (5.27), (5.24), (5.29), (5.30) и для оценки последнего слагаемого в (5.29) применяя оценки (5.25) в несколько большей области \hat{Q}_1 , $\hat{Q}_1 \supset \overline{\widetilde{Q}}_1$, получим:

$$\varepsilon^{2} \left\| \frac{\partial^{3} \overline{z}}{\partial \rho^{3}} \right\|_{\widetilde{Q}^{1}}^{2} \leqslant O\left(\varepsilon^{2m+1}\right), \tag{5.31}$$

$$\varepsilon^{2} \left\| \frac{\partial^{3} \overline{z}}{\partial \rho^{3}} \right\|_{\widetilde{C}^{2}}^{2} \leqslant O\left(\varepsilon^{2m+1}\right). \tag{5.31'}$$

Дифференцируя по ρ и по φ последовательно уравнение (5.17), мы выведем аналогично

$$\left. \begin{array}{l} \varepsilon^{2} \| D_{\circ}^{k+2} D_{\varphi}^{l}(\overline{z}) \|_{\widetilde{Q}^{1}}^{2} = O\left(\varepsilon^{2(m+1)+1-2k-l}\right), \\ \varepsilon^{2} \| D_{\varphi}^{k+2} D_{\varphi}^{l}(\overline{z}) \|_{\widetilde{Q}^{2}}^{2} = O\left(\varepsilon^{2(m+1)-k-l}\right) \end{array} \right\} (k \geqslant 1), \tag{5.32}$$

где $D_{\varrho}=\frac{\partial}{\partial \varrho}$, $D_{\varphi}=\frac{\partial}{\partial \varphi}$, $k+l\leqslant p$. Вспоминая, что $\widetilde{\zeta}=1$ в Q^1 , соответственно Q^2 , и объединяя оценки (5.32), (5.28), (5.25), а также оценки (5.14), полученные в любой внутренней подобласти, мы убедимся в справедливости всех утверждений теоремы 6.

При дифференцировании g_m по ρ каждый раз возникает множитель $\frac{1}{\varepsilon}$, который и приводит к увеличению нормы g_m на порядок.

¹⁾ Действительно, g_m является суммой ограниченных коэффициентов, умноженных на множители вида $P\left(\frac{\rho}{\varepsilon}, \varphi\right) \exp\left[-\lambda\left(\varphi\right) \frac{\rho}{\varepsilon}\right]$ (см. (4.37), (4.39)), а $\left\|\widetilde{\zeta}P\left(\frac{\rho}{\varepsilon}, \varphi\right) \exp\left[-\lambda_1\left(\varphi\right) \frac{\rho}{\varepsilon}\right]\right\| = O\left(\varepsilon^{\frac{1}{2}}\right).$

4. Доказательство теоремы 8. Если правая часть h и коэффициенты $L_{\mathfrak{s}}$ имеют ограниченные первые производные в Q и порядок касания p-1 и q-1 характеристик в точках A и B меньше 2, то согласно (4.27) решение w задачи A_0 принадлежит $W_2^{(1)}(Q)$. Кроме того, первое приближение погранслоя $v_0 = -\psi\left(\frac{\rho}{\eta}\right)w\left(0,\varphi\right)\exp\left(-\lambda,\frac{\rho}{\mathfrak{s}}\right)$ также принадлежит $W_2^{(1)}$. Отсюда следует, что невязка $z=u_{\mathfrak{s}}-(w+v_0)\in W_2^{(1)}$ и $z\mid_{\Gamma}=0$. Для гладких функций $G\left(x,y\right)$, $H\left(x,y\right)$, обращающихся в нуль на Γ , имеем (см. (5.2)):

$$(L_{\epsilon}G, H) = -\epsilon \int_{Q} \left[a \frac{\partial G}{\partial x} \frac{\partial H}{\partial x} + b \frac{\partial H}{\partial x} \frac{\partial G}{\partial y} + b \frac{\partial G}{\partial x} \frac{\partial H}{\partial y} + c \frac{\partial H}{\partial y} \frac{\partial G}{\partial y} + \dots \right] dx dy + \left[\int_{Q} \left(\frac{\partial G}{\partial x} - fG \right) H dx dy \right] = -\epsilon B (G, H) + (L_{1}G, H), \quad (5.33)$$

где через B мы обозначили интеграл с множителем ε . Совершенно аналогично тому, как это сделано при выводе энергетического неравенства ((5.3), (5.3')), получим:

$$\varepsilon \left(\left\| \frac{\partial z}{\partial x} \right\|^2 + \left\| \frac{\partial z}{\partial y} \right\|^2 \right) + \|z\|^2 \leqslant C \left(-\varepsilon B(z, z) + (L_1 z, z) \right). \tag{5.34}$$

С другой стороны, пользуясь тем, что u_z — решение задачи A_z (4.21), (4.22), а w — задачи A_0 ($z=u_z-(w+v_0)$), имеем:

$$-\varepsilon B(z, z) + (L_{1}z, z) = -\varepsilon B(u_{\varepsilon}, z) + (L_{1}u_{\varepsilon}, z) - [-\varepsilon B(w, z) + (L_{1}w, z)] - [-\varepsilon B(v_{0}, z) + (L_{1}v_{0}, z)] = (h, z) + \varepsilon B(w, z) - (h, z) + [-\varepsilon B(v_{0}, z) - (L_{1}v_{0}, z). \quad (5.35)$$

Очевидно,

$$\varepsilon B(w, z) \leqslant KM\varepsilon \|w\|_{W_0^{(1)}}^2 + \varepsilon \frac{M}{K} \left(\left\| \frac{\partial z}{\partial x} \right\|^2 + \left\| \frac{\partial z}{\partial y} \right\|^2 + \|z\|^2 \right). \tag{5.36}$$

Последние два слагаемых в (5.35) представляются в виде интегралов, взятых по окрестности Γ^- , в которой $v_0 \neq 0$. Записывая эти интегралы в координатах (ρ , φ), имеем:

$$- \varepsilon B (v_0, z) + (L_1 v_0, z) =$$

$$= \Big| \int_Q \Big\{ \varepsilon \Big[\rho C \frac{\partial v_0}{\partial \rho} \frac{\partial z}{\partial \rho} + D \frac{\partial v_0}{\partial \varphi} \frac{\partial z}{\partial \rho} + \dots \Big] + F \rho \frac{\partial v_0}{\partial \rho} z + G \frac{\partial v_0}{\partial \varphi} z + H v_0 z \Big\} d\rho d\varphi \Big| +$$

$$+ O (\varepsilon^n)^{-1}, \quad (5.37)$$
причем мы представили коэффициенты $\alpha(\rho, \varphi) = a(x, y)$ и $\delta(\rho, \varphi)$

$$(\alpha M - (4.28) - (4.29)) = \rho \text{ Philog} \alpha(\rho, \varphi) - \alpha(\varphi) + \rho \alpha(\rho, \varphi) = \delta(\rho, \varphi) + \delta(\varphi) + \delta(\varphi, \varphi)$$

причем мы представили коэффициенты $\alpha(\rho, \varphi) = a(x, y)$ и $\delta(\rho, \varphi)$ (см. (4.28), (4.29)) в виде $\alpha(\rho, \varphi) = \alpha(\varphi) + \rho\alpha_1(\rho, \varphi)$, $\delta(\rho, \varphi) = \delta(\varphi) + \rho\delta_1(\rho, \varphi)$. Под знаком последнего интеграла не будет членов $+\alpha(\varphi)\frac{\partial v_0}{\partial \rho}\frac{\partial z}{\partial \rho} + \frac{\partial v_0}{\partial \rho}z$, так как v_0 удовлетворяет уравнению (4.32); через $O(\epsilon^n)$ мы обозначили члены, содержащие производные от $\psi\left(\frac{\rho}{\eta}\right)$. Это оправдано

¹⁾ v_0 под знаком интеграла означает функцию, заданную формулой (4.33"), т. е. без множителя $\psi\left(\frac{\rho}{r}\right)$, который включен в коэффициенты и в $O\left(\epsilon^n\right)$.

тем, что подынтегральное выражение с такими членами равно нулю в $\frac{1}{3}$ η -полоске Γ^- , а вне этой полоски погранслой v_0 и его производные имеют любой порядок малости относительно ε . Кроме того, с помощью интегрирования по частям мы добиваемся того, чтобы в правой части (5.37) под знаком интеграла не было членов с $\frac{\partial v_0}{\partial \rho}$, кроме случая $C \rho \frac{\partial v_0}{\partial \rho} \frac{\partial z}{\partial \rho}$.

С помощью не раз уже применявшихся оценок скалярных произведений мы из (5.37) выводим, что

$$|-\varepsilon B(v_0, z) + (L_1 v_0, z)| \leq \frac{M\varepsilon^2}{K} \left(\left\| \frac{\partial z}{\partial x} \right\|^2 + \left\| \frac{\partial z}{\partial y} \right\|^2 \right) + \frac{M}{K} \|z\|^2 + K_1 \left(\|v_0\|^2 + \left\| \frac{\partial v_0}{\partial x} \right\|^2 + \left\| \rho \frac{\partial v_0}{\partial \rho} \right\|^2 \right). \quad (5.38)$$

Так как

$$\|v_{0}\|^{2} = \int_{\rho \leqslant \eta} w^{2}(0, \varphi) e^{-2\lambda_{1}(\varphi)\frac{\rho}{\varepsilon}} I d\rho d\varphi = O(\varepsilon), \|\frac{\partial v_{0}}{\partial \varphi}\|^{2} = O(\varepsilon),$$

$$\|\rho \frac{\partial v_{0}}{\partial \rho}\|^{2} = O(\varepsilon),$$

$$(5.39)$$

то, взяв в (5.38) и (5.36) K таким, чтобы $\frac{MC}{K} \leqslant \frac{1}{2}$, мы из (5.34), (5.35), (5.36) и (5.38) при достаточно малом ϵ выведем, что

$$\varepsilon\left(\left\|\frac{\partial z}{\partial x}\right\|^{2}+\left\|\frac{\partial z}{\partial y}\right\|^{2}\right)+\left\|z\right\|^{2}=O\left(\varepsilon\right),$$

что и требовалось доказать.

5. Доказательство теоремы 9. Если $h(x, y) \subset \mathcal{L}_2(Q)$, то w(x, y), вообще говоря, не допускает производной по y и обладает такими же разрывами, грубо говоря, как функция h.

По фиксированной функции $\phi(x,y)$, дифференцируемой в \overline{Q} и обращающейся в нуль в некоторых окрестностях точек A и B, строим функцию $\zeta(x,y)$ как решение задачи Коши:

$$L_1^* \zeta \equiv -\frac{\partial \zeta}{\partial x} - f(x, y) \zeta = \psi(x, y), \quad (x, y) \in Q, \quad \zeta|_{\Gamma} = 0$$
 (5.40)

 $(L_1^*$ — оператор, сопряженный к L_1 (4.20)). Очевидно, $\zeta(x,y)$ обращается, как и $\psi(x,y)$, в нуль вблизи A и B. Докажем, что

$$(u_{\varepsilon}, \, \phi) = (h, \, \zeta) + O\left(\sqrt{\varepsilon}\right).$$
 (5.41)

С другой стороны,

$$(w, \psi) = (w, L_1^*\zeta) = (L_1w, \zeta) = (h, \zeta).$$
 (5.42)

Из (5.41) и (5.42) вытекает (4.46). Остается вывести (5.41). По функции $\zeta(x, y)$, которая на Γ^+ не обращается, вообще говоря, в нуль, строим вблизи Γ^+ пограничный слой $\widetilde{\chi}(\rho, \theta)$ как решение обыкновенного уравнения

$$Nv \equiv \varepsilon \alpha \, (\theta) \, \frac{\partial^{2} \widetilde{v}}{\partial \rho^{2}} + \delta_{0} \, (\theta) \, \frac{\partial \widetilde{v}}{\partial \rho} = 0, \tag{5.43}$$

где (ρ, θ) — такие же координаты вблизи Γ^+ , как (ρ, ϕ) вблизи Γ^- ; $\alpha(\theta) = \alpha(\rho, \theta)|_{\rho=0}$, $\alpha(\theta) = -\cos(\rho, x)|_{\Gamma^+} \gg \alpha_1^2 > 0$, при граничном условии

$$\widetilde{\gamma}|_{\mathbf{r}^{+}} = \widetilde{\gamma}|_{\rho=0} = -\zeta(\rho, \theta)|_{\rho=0} = -\zeta(0, \theta). \tag{5.44}$$

Следовательно, $\widetilde{\mathbf{v}} = -\zeta(0, \theta) \, e^{-\frac{d_1 \hat{\mathbf{v}}}{\epsilon}}, \ d_1 = \frac{\delta_0(\theta)}{\alpha(\theta)} \geqslant \alpha_2^2 > 0.$ Положим: $\mathbf{v} = \widetilde{\mathbf{v}} \cdot \psi\left(\frac{\rho}{\eta}\right)$. Очевидно, $(\zeta + \mathbf{v})|_{\Gamma} = 0$.

Отметим, что оператор N является такой же частью оператора L_{ϵ}^* , как оператор M_0 относительно оператора L_{ϵ} .

Имеем согласно (5.40):

$$(u_{\varepsilon}, \, \psi) = (u_{\varepsilon}, \, L_{1}^{*}\zeta) = (u_{\varepsilon}, \, L_{1}^{*}(\zeta + \nu)) - (u_{\varepsilon}, \, L_{1}^{*}\nu) =$$

$$= (L_{\varepsilon}u_{\varepsilon}, \, \zeta + \nu) + ((L_{1} - L_{\varepsilon})u_{\varepsilon}, \, (\zeta + \nu)) - (u_{\varepsilon}, \, L_{1}^{*}\nu) =$$

$$= (h, \, \zeta) + (h, \, \nu) - \varepsilon \, (L_{0}u_{\varepsilon}, \, (\zeta + \nu)) - (u_{\varepsilon}, \, L_{1}^{*}\nu). \quad (5.45)$$

Пользуясь тем, что $(\zeta + \nu)|_{\Gamma} = 0$, мы сможем с помощью интегрирования по частям придать третьему слагаемому вид билинейной формы: $-\varepsilon (L_2 u_\varepsilon, (\zeta + \nu)) = \varepsilon B(u_\varepsilon, \zeta + \nu)$, в которую входят лишь производные 1-го порядка от u_ε , $(\zeta + \nu)$ и сами функции u_ε , $z + \nu$ (см. (5.33)). Но в силу (5.1) и ограниченности производных от ζ в Q

$$\varepsilon \mid B\left(u_{\varepsilon}, \zeta\right) \mid \leqslant C \varepsilon \parallel u_{\varepsilon} \parallel_{W_{2}^{(1)}} \parallel \zeta \parallel_{W_{C}^{(2)}} = O\left(\sqrt{\varepsilon}\right). \tag{5.46}$$

Слагаемые $\varepsilon B(u_{\varepsilon}, \nu) - (u_{\varepsilon}, L_1^* \nu)$ оцениваются аналогично тому, как $\varepsilon B(v_0, z) - (L_1 v_0, z)$ в доказательстве предыдущей теоремы (см. (5.37), (5.38))

$$|\varepsilon B(u_{\varepsilon}, \nu) - (u_{\varepsilon}, L_{1}^{*}\nu)| \leq$$

$$\leq C \left\{ \varepsilon \left[\left\| \frac{\partial u_{\varepsilon}}{\partial x} \right\| + \left\| \frac{\partial u_{\varepsilon}}{\partial y} \right\| \right] + \|u_{\varepsilon}\| \right\} \cdot \left\{ \left\| \rho \frac{\partial \nu}{\partial \rho} \right\| + \left\| \frac{\partial \nu}{\partial \theta} \right\| + \|\nu\| \right\}, \quad (5.47)$$

причем мы воспользовались (5.43). Так как

$$\|\mathbf{y}\| + \left\| \frac{\partial \mathbf{y}}{\partial \mathbf{0}} \right\| + \left\| \rho \frac{\partial \mathbf{y}}{\partial \rho} \right\| = O\left(\sqrt{\varepsilon}\right), \tag{5.48}$$

и $\|(h, \nu)\| \le \|h\| \cdot \|\nu\| = O(\sqrt{\epsilon})$, то отсюда и из (5.47), (5.46), (5.45) выводим (5.41), что и требовалось доказать.

Так как нормы u_{ε} равномерно ограничены: $||u_{\varepsilon}|| \leq M ||h||$ (см. (5.1)), и функции ψ образуют плотное множество в $\mathcal{L}_2(Q)$, то из (5.41) и (5.42) вытекает слабая сходимость u_{ε} к w в $\mathcal{L}_2(Q)$.

6. Доказательство теоремы 7. Используя (4.25) и (4.27), легко выведем, что

$$\tilde{L}_{\varepsilon}w = h + \varepsilon O\left[(y - y_0)^{\frac{1}{p} - 2} + (y_1 - y)^{\frac{1}{q} - 2} \right]. \tag{5.49}$$

Отметим также, что на Γ^- вблизи точки A

$$\varphi = O(x_1(y) - x_0(y)) = O\left[(y - y_0)^{\frac{1}{p}}\right]; \quad y - y_0 = O(\varphi^p)$$
 (5.50)

и аналогично в окрестности точки B. Поэтому вблизи A согласно (4.25) имеем:

$$w(x_0(y), y) = w(0, \varphi) = O(x_1(y) - x_0(y)) = O((y - y_0)^{\frac{1}{p}}) = O(\varphi).$$
 (5.50')

Ограничимся во всем дальнейшем, для простоты, случаем $p=2,\ q=2.$ Заменим граничное значение $w\left(0,\varphi\right)$ функции w через

$$\widetilde{w}\left(\varphi\right)=w\left(0,\,\varphi\right)\,\,\zeta\left(\frac{\varphi}{\varepsilon^{\beta}}\right)\zeta\left(\frac{\varphi_{1}}{\varepsilon^{\beta}}\right),$$

где $\zeta(\xi)$ —гладкая функция, $\zeta(\xi)=0$ при $\xi\leqslant\frac{1}{2}$ и $\zeta(\xi)=1$ при $\xi\geqslant1$; показатель $\beta<1$ и будет дальше точнее определен; $\varphi_1=\Phi-\varphi$; Φ — координата точки B на Γ -. Очевидно, $\widetilde{w}(\varphi)$ отличается от $w(0,\varphi)$ лишь в окрестностях порядка ε^{β} точек A и B. Пусть v_0 —погранслой, определяемый из условий (4.32), (4.33'), где $w(0,\varphi)$ заменено на $\widetilde{w}(\varphi)$, а v_1 —функция типа погранслоя, определяемая из уравнения (4.35) для i=1 (N=1) при условии v_1 r=0. Положим

$$\widetilde{v}_{\varepsilon} = \zeta_1 \left(\frac{\rho}{\varepsilon^{\alpha}} \right) [v_0 + \varepsilon v_1],$$

где $\zeta_1(\xi)$ — гладкая функция, $\zeta_1(\xi)=1$ для $\xi\leqslant\frac{1}{2}$, $\zeta_1(\xi)=0$ для $\xi\geqslant 1$; $\alpha<1$. Предполагается, что $\frac{1}{2}<2\beta\leqslant\alpha$, $\alpha+\beta<1$.

Докажем, что во всей области Q

$$L_{\varepsilon}\widetilde{v}_{\varepsilon} = \varepsilon O\left(\frac{1}{\left(y - y_{0}\right)^{\frac{3}{2}}} + \frac{1}{\left(y_{1} - y\right)^{\frac{3}{2}}}\right),\tag{5.51}$$

т. е. применение оператора L_{ϵ} к погранслою $\widetilde{v_{\epsilon}}$ дает выражение такого же порядка, как второе слагаемое правой части (5.49) при p=q=2. Достаточно провести все оценки лишь в окрестности точки A.

Согласно (5.50') имеем:

$$\widetilde{w}'(\varphi) = O(\varphi),$$

$$\widetilde{w}'(\varphi) = w(0, \varphi) \zeta'_{\varphi} + w'_{\varphi}(0, \varphi) \cdot \zeta = O(1),$$

$$\widetilde{w}''_{\varphi}(\varphi) = O(\varphi^{-1}),$$

$$\widetilde{w}''_{\varphi}(\varphi) = O(\varphi^{-2}).$$
(5.52)

При этом мы воспользовались тем, что там, где $\zeta_{\varphi}'\not\equiv 0$, т. е. для $\frac{1}{2}\,\varepsilon^{\beta}<\varphi<\varepsilon^{\beta}$, имеем $\zeta_{\varphi}'=\frac{1}{\varepsilon^{\beta}}\,\zeta_{\varepsilon}'=O\,(\varphi^{-1})$, и аналогичными оценками для ζ_{φ}'' и ζ_{φ}'''' . Далее заметим, что аналогичные оценки имеют место для $v_0=\widetilde{w}\,(\varphi)\,e^{-\frac{\lambda\,(\varphi)\,\rho}{\varepsilon}}$, ввиду того, что $\lambda\,(\varphi)=O\,(\varphi)$, $\lambda'\,(\varphi)=O\,(1)$, $\lambda'''\,(\varphi)=O\,(1)$. Действительно $(\rho$ —нормаль к Γ),

$$(v_0)'_{\varphi} = \widetilde{w}'(\varphi) \cdot e^{-\lambda(\varphi)\frac{\rho}{\varepsilon}} - \widetilde{w}(\varphi) \cdot \frac{\lambda'(\varphi)}{\lambda(\varphi)} \left(\frac{\rho\lambda(\varphi)}{\varepsilon}\right) e^{-\lambda(\varphi)\frac{\rho}{\varepsilon}} = O(1)$$

и аналогично

$$(v_0)_{\varphi}'' = O(\varphi^{-1}), \quad (v_0)_{\varphi}^{\prime\prime\prime} = O(\varphi^{-2}).$$

Заметим теперь, что оператор R_1 содержит дифференцирование по t до второго порядка, дифференцирование по φ до первого порядка и множители t степени $\leqslant 1$. Так как дифференцирование по t повышает порядок малости v_0

вблизи A на единицу: $\frac{\partial v_0}{\partial t} = -\lambda (\varphi) \widetilde{w} (\varphi) e^{-\lambda (\varphi) t} = O (\varphi^2)$, множитель t понижает порядок малости на единицу у выражений вида $v = O (\varphi^k) e^{-\lambda (\varphi) t}$, $tv = tO (\varphi^k) \cdot e^{-\lambda (\varphi) t} = O (\varphi^k) \lambda^{-1} (\lambda t) e^{-\lambda t} = O (\varphi^{k-1}) e^{-\lambda t}$, и точно так же убеждаемся в том, что дифференцирование по φ понижает порядок на единицу, например $\frac{\partial}{\partial \varphi} (v_0) = \widetilde{w}' (\varphi) e^{-\lambda t} - \widetilde{w} \cdot \lambda' (\varphi) t e^{-\lambda t} = O (1) e^{-\lambda t} - \lambda' \widetilde{w} \lambda^{-1} (\lambda t) e^{-\lambda t} = O (1) e^{-\lambda t}$, то

$$R_1 v_0 = O(1) e^{-\lambda (\varphi) t}.$$
 (5.53)

Напомним теперь, что функцию $v_{\scriptscriptstyle 1}$ мы определяем методом подбора из уравнения

$$M_{0}v_{1} \equiv \alpha\left(\varphi\right) \frac{\partial^{2}v_{1}}{\partial t^{2}} + \delta\left(\varphi\right) \frac{\partial v_{1}}{\partial t} = -R_{1}v_{0} = -\left[A\left(\varphi\right)t + B\left(\varphi\right)\right]e^{-\lambda t}.$$

Отсюда находим, что $v_1=\frac{1}{\alpha\left(\varphi\right)}t\left[\frac{A}{2\lambda}t+\frac{B}{\lambda}\right]e^{-\lambda t}$. Следовательно, ввиду того, что v_1 получается из R_1v_0 с помощью умножения на t и деления на $\lambda\left(\varphi\right)$, то $v_1=O\left(\varphi^{-2}\right)$. Итак,

$$v_0 + \epsilon v_1 = O\left(\varphi + \frac{\epsilon}{\varphi^2}\right).$$
 (5.54)

Производная по ϕ понижает на единицу порядок v_1 по ϕ , производная по t увеличивает на единицу, а множитель t понижает порядок такой функции на единицу. Следовательно,

$$R_1 v_1 = O\left(\frac{1}{\varphi^3}\right). \tag{5.53'}$$

Выражение для $R_2 v$ содержит производные по φ до второго порядка; пользуясь сказанным выше, **н**айдем, что

$$R_{2}v_{0}=O\left(\varphi^{-1}\right), \qquad R_{2}v_{1}=O\left(\varphi^{-4}\right). \tag{5.53''}$$

Согласно формуле (4.30), записанной для N=1, пользуясь (5.53') и (5.53"), получим для $\overline{v}=v_0+\varepsilon v_1$:

$$\begin{split} L_{\varepsilon} \overline{v} &= L_{\varepsilon} \left(v_0 + \varepsilon v_1 \right) = \varepsilon R_1 v_1 + \varepsilon R_2 v_0 + \varepsilon^2 R_2 v_1 = \\ &= O\left(\frac{\varepsilon}{\tau^3} + \frac{\varepsilon}{\tau} + \frac{\varepsilon^2}{\tau^4} \right) = O\left(\frac{\varepsilon}{\tau^3} + \frac{\varepsilon^2}{\tau^4} \right). \end{split} \tag{5.55}$$

Имеем для $\widetilde{v}_{\epsilon} = \frac{1}{1} \left(\frac{\rho}{\epsilon^{\alpha}} \right) (v_0 + \epsilon v_1)$:

$$\begin{split} L_{\varepsilon}\widetilde{v}_{\varepsilon} &= L_{\varepsilon}\left(\zeta_{1}\overline{v}\right) = \zeta_{1}L_{\varepsilon}\overline{v} + \varepsilon\overline{v}L_{2}\zeta_{1} + \overline{v}\frac{d\zeta_{1}}{d\rho} + \\ &+ \varepsilon O\left[\left(\left|\frac{\partial\overline{v}}{\partial\rho}\right| + \left|\frac{\partial\overline{v}}{\partial\varphi}\right|\right)\left(\left|\frac{d\zeta_{1}}{d\rho}\right|\right)\right] = O\left(\frac{\varepsilon}{\varphi^{3}} + \frac{\varepsilon^{2}}{\varphi^{4}}\right) + \varepsilon O\left(\varphi + \frac{\varepsilon}{\varphi^{2}}\right) \cdot O\left(\frac{1}{\varepsilon^{2x}}\right) + \\ &+ O\left(\frac{1}{\varepsilon^{\alpha}}\left(\varphi + \frac{\varepsilon}{\varphi^{2}}\right)\right) + \varepsilon O\left[\left(\frac{\varphi}{\varepsilon}\left(\varphi + \frac{\varepsilon}{\varphi^{2}}\right) + \left(1 + \frac{\varepsilon}{\varphi^{3}}\right)\right) \cdot \frac{1}{\varepsilon^{\alpha}}\right]^{1}\right). \quad (5.56) \end{split}$$

Отметим, что в выражения для O () входит множитель $e^{-\lambda(\varphi)t}=e^{-\lambda(\varphi)\frac{\theta}{\epsilon}}.$

 $^{^{1}}$) Без ограничения общности мы считаем, что в L_{2} входят лишь члены второго порядка.

Следовательно, для $\frac{1}{2} \, \epsilon^{\beta} < \phi$ и $\frac{1}{2} \, \epsilon^{\alpha} < \rho < \epsilon^{\alpha}$

$$e^{-\lambda(\varphi)\frac{\rho}{\varepsilon}} \leqslant e^{-\frac{K\cdot\varphi\cdot\varepsilon^{\alpha}}{\varepsilon}} \leqslant e^{-K_{1}\varepsilon^{\beta+\alpha-1}} = O\left(\varepsilon^{n}\right) \quad (\alpha+\beta<1)$$

для любого n, и

$$L_{\varepsilon}(\widetilde{v}_{\varepsilon}) = O\left(\varepsilon^{n_1}\left(\frac{\varepsilon}{\varphi^3} + \frac{\varepsilon^2}{\varphi^4}\right)\right) = O\left(\frac{\varepsilon}{\varphi^3} + \frac{\varepsilon^2}{\varphi^4}\right). \tag{5.57}$$

Для $\phi < \frac{1}{2} \, \varepsilon^{\beta} \, \widetilde{v}_{\varepsilon} \equiv 0$, и эта оценка также остается в силе. Для $\rho < \frac{1}{2} \, \varepsilon^{\alpha}$ $\widetilde{v}_{\varepsilon} = \overline{v}$, и согласно (5.55) она также верна.

Пусть y и \widetilde{y} —ординаты двух точек $D\left(\varphi,\;\rho\right),\;D\left(\varphi,\;0\right)$ трансверсали $\varphi=\mathrm{const}$ при $\rho<\varepsilon^{\alpha}$ и $\varphi>\frac{1}{2}\,\varepsilon^{\beta}$ (т. е. там, где $\widetilde{v}_{\varepsilon}\not\equiv0$). Тогда

$$y-y_0\leqslant \widetilde{y}-y_0+\rho\leqslant C\varphi^2+\varepsilon^\alpha=C\varphi^2+(\varepsilon^\beta)^\frac{\alpha}{\beta}=C\varphi^2+C_1\varphi^\frac{\alpha}{\beta}\leqslant C_2\varphi^2\quad (\alpha\geqslant 2\beta). \eqno(5.58)$$
 Отсюда выводим, что

$$\frac{\varepsilon}{\varphi^3} \leqslant C_3 \frac{\varepsilon}{(y-y_0)^{\overline{2}}}$$
.

Учитывая, что для $\phi > \frac{1}{2} \, \epsilon^{\beta}, \, \beta < 1, \, \frac{\epsilon}{\phi} < C$, имеем для указанных выше ρ и ϕ :

$$\frac{\varepsilon^2}{\varphi^4} \leqslant C_4 \frac{\varepsilon}{(y-y_0)^{\frac{3}{2}}}.$$

Следовательно, оценка (5.51) установлена.

После того как установлена оценка (5.51), уже легко найти оценку в Q для невязки z. Согласно (4.21), (5.49) и (5.51) имеем:

$$L_{\varepsilon}z = \varepsilon O((y - y_0)^{-\frac{3}{2}} + (y_1 - y)^{-\frac{3}{2}}) \qquad (z = u_{\varepsilon} - (\omega + \widetilde{v}_{\varepsilon})). \tag{5.59}$$

Так как

$$L_{\varepsilon}(u_{\varepsilon} - w) = -\varepsilon L_{2}w = \varepsilon O((y - y_{0})^{-\frac{3}{2}} + (y_{1} - y)^{-\frac{3}{2}})$$
 (5.60)

И

$$(u_{\varepsilon} - w)|_{\Gamma} = O(\varphi \cdot \varphi_1) = O((y - y_0)^{\frac{1}{2}} \cdot (y_1 - y)^{\frac{1}{2}}),$$
 (5.61)

то для оценки $u_{\varepsilon}-w$ вблизи точек A и B можно использовать барьер $\mathbf{r}_{\!\scriptscriptstyle i}=m_{\!\scriptscriptstyle 0}\,(y-y_{\!\scriptscriptstyle 0})^{\!\frac{1}{2}}(y_1-y)^{\!\frac{1}{2}},$ так как

$$L_{\varepsilon}(\eta) = -m_{0} \left(\varepsilon c(x, y) \frac{1}{4} (y - y_{0})^{-\frac{3}{2}} + \frac{1}{2} f(y - y_{0})^{\frac{1}{2}} \right) (y_{1} - y)^{\frac{1}{2}} -$$

$$-m_{0} \left(\varepsilon c(x, y) \frac{1}{4} (y_{1} - y)^{-\frac{3}{2}} + \frac{1}{2} f(y_{1} - y)^{\frac{1}{2}} \right) (y - y_{0})^{\frac{1}{2}} +$$

$$+ 2m_{0} \left[\frac{1}{4} \varepsilon c(x, y) (y - y_{0})^{-\frac{1}{2}} (y_{1} - y)^{-\frac{1}{2}} \right]. \quad (5.62)$$

Так как без ограничения общности можно считать, что $y_1 - y_0 < 1$, то

$$m_{0}[(y-y_{0})^{-\frac{3}{2}}(y_{1}-y)^{\frac{1}{2}}+(y_{1}-y)^{-\frac{3}{2}}(y-y_{0})^{\frac{1}{2}}-2(y-y_{0})^{\frac{1}{2}}(y_{1}-y)^{\frac{1}{2}}] \geqslant \\ \geqslant C_{1}m_{0}[(y-y_{0})^{-\frac{3}{2}}+(y_{1}-y)^{-\frac{3}{2}}], \qquad C_{1}>0, \quad (5.63)$$

И

$$L_{\varepsilon}(\eta) \leqslant -\frac{1}{4} \varepsilon C m_0 \left[(y - y_0)^{-\frac{3}{2}} + (y_1 - y)^{-\frac{3}{2}} \right]. \tag{5.64}$$

Взяв m_0 достаточно большим, можно добиться того, чтобы модуль правых частей (5.60) и (5.61)

$$|\varepsilon O((y-y_0)^{-\frac{3}{2}}+(y_1-y)^{-\frac{3}{2}})| \leq \frac{1}{4} C m_0 \varepsilon [(y-y_0)^{-\frac{3}{2}}+(y_1-y)^{-\frac{3}{2}}], \quad (5.65)$$

$$|O((y-y_0)^{\frac{1}{2}}+(y_1-y)^{\frac{1}{2}})| \leq \eta(y).$$
 (5.66)

Согласно (5.64), (5.65) и (5.66) функция η может служить барьером для $u_{\varepsilon} - w$, и, следовательно, в силу принципа максимума, примененного к функциям $u_{\varepsilon} - w + \eta$, $-(u_{\varepsilon} - w) + \eta$, получим:

$$|u_{\varepsilon} - w| \leq m_0 (y - y_0)^{\frac{1}{2}} (y_1 - y)^{\frac{1}{2}}.$$
 (5.66')

Для $\phi \gg \frac{1}{2} \, \epsilon^{\beta}$, $\phi_1 \gg \frac{1}{2} \, \epsilon^{\beta}$, а значит, для $y-y_0 \gg C \epsilon^{2\beta}$, $y_1-y \gg C \epsilon^{2\beta}$

$$\begin{split} v_{\varepsilon} &= \zeta_1 \left(v_0 + \varepsilon v_1 \right) = O\left(\left(\varphi + \frac{\varepsilon}{\varphi^2} \right) \cdot \left(\varphi_1 + \frac{\varepsilon}{\varphi_1^2} \right) \right) = \\ &= O\left(\left(\left(y - y_0 \right)^{\frac{1}{2}} + \frac{\varepsilon}{y - y_0} \right) \left(\left(y_1 - y \right)^{\frac{1}{2}} + \frac{\varepsilon}{y_1 - y} \right) \right) \end{split}$$

(см. (5.54)), и в силу (5.66')

$$z_{\varepsilon} = u_{\varepsilon} - w - v_{\varepsilon} = O\left[\left(\left(y - y_{0}\right)^{\frac{1}{2}} + \frac{\varepsilon}{y - y_{0}}\right)\left(\left(y_{1} - y\right)^{\frac{1}{2}} + \frac{\varepsilon}{y_{1} - y}\right)\right],$$

т. е. для $y-y_0\!\geqslant\!C\varepsilon^{2\beta},\ y_1-y\!\gg\!C\varepsilon^{2\beta}$

$$|z_{\varepsilon}| \leq M \left[((y - y_0)^{\frac{1}{2}} + \frac{\varepsilon}{y - y_0}) \left((y_1 - y)^{\frac{1}{2}} + \frac{\varepsilon}{y_1 - y} \right) \right].$$
 (5.67)

В качестве второй барьерной функции возьмем

$$\eta_{1} = \varepsilon M m_{1} \left[(y - y_{0})^{-\frac{3}{2}} + (y_{1} - y)^{-\frac{3}{2}} \right],$$

$$L_{\varepsilon} \eta_{1} = \varepsilon M m_{1} \left[\frac{15}{4} \varepsilon c(x, y) (y - y_{0})^{-2} - \frac{1}{2} f \right] (y - y_{0})^{-\frac{3}{2}} + \frac{1}{2} \varepsilon c(x, y) (y_{1} - y)^{-2} - \frac{1}{2} f \right] (y_{1} - y)^{-\frac{3}{2}}. (5.68)$$

Правая часть (5.68) будет заведомо отрицательной, если $\frac{15}{4}\,\varepsilon c\,(x,-y)\,(y-y_0)^{-2}-\frac{1}{2}\,f\leqslant -\gamma^2, \qquad \frac{15}{4}\,\varepsilon c\,(x,-y)\,(y_1-y)^{-2}-\frac{1}{2}\,f\leqslant -\gamma^2, \ (5.69)$ и так как $f\geqslant \omega^2>0$, то (5.69) выполнено для

$$y - y_0 \geqslant \frac{1}{2} \delta_1^2, \qquad y_1 - y \geqslant \frac{1}{2} \delta_1^2, \qquad \delta_1 > 0.$$
 (5.70)

Для таких у имеем

$$L_{\epsilon}\eta_{1} \leq -\gamma^{2}Mm_{1}\epsilon \left[(y-y_{0})^{-\frac{3}{2}} + (y_{1}-y)^{-\frac{3}{2}} \right].$$
 (5.70')

Заметим теперь, что неравенство

$$\eta_{1} = \varepsilon M m_{1} \left[(y - y_{0})^{-\frac{3}{2}} + (y_{1} - y)^{-\frac{3}{2}} \right] \geqslant
\geqslant M \left[\left((y - y_{0})^{\frac{1}{2}} + \frac{\varepsilon}{y - y_{0}} \right) \left((y_{1} - y)^{\frac{1}{2}} + \frac{\varepsilon}{y_{1} - y} \right) \right] (5.71)$$

заведомо выполняется, если

$$\begin{split} \varepsilon m_1 \left(y-y_0\right)^{-\frac{3}{2}} &\geqslant \left(y-y_0\right)^{\frac{1}{2}} + \frac{\varepsilon}{y-y_0} \quad \text{и} \quad \varepsilon m_1 \left(y_1-y\right)^{-\frac{3}{2}} \geqslant \left(y_1-y\right)^{\frac{1}{2}} + \frac{\varepsilon}{y_1-y} \\ \text{или, так как } \left| \, y-y_0 \, \right| &< 1, \, \, |y_1-y| < 1 \ \, (m_1>1), \, \text{ то достаточно, чтобы} \\ &\varepsilon \left(m_1-1\right) \geqslant \left(y-y_0\right)^2, \qquad \varepsilon \left(m_1-1\right) \geqslant \left(y_1-y\right)^2, \end{split}$$

т. е.

$$\varepsilon^{\frac{1}{2}}(m_1-1)^{\frac{1}{2}} \geqslant y-y_0, \qquad \varepsilon^{\frac{1}{2}}(m_1-1)^{\frac{1}{2}} \geqslant y_1-y.$$
 (5.72)

Взяв m_1 столь большим, чтобы $(m_1-1)^{\frac{1}{2}} \gg c_1^2$ и чтобы $\gamma^2 M m_1 \epsilon \left[(y_1-y)^{-\frac{3}{2}} + (y-y_0)^{-\frac{3}{2}} \right]$ было больше модуля правой части (5.59), мы из (5.67), (5.71) и (5.70), (5.70') выводим, что в подобласти $Q_1 \subset Q$, ограниченной Γ^- , Γ^+ и прямыми

$$y - y_0 = (m_1 - 1)^{\frac{1}{2}} z^{\frac{1}{2}}, \qquad y_1 - y = (m_1 - 1)^{\frac{1}{2}} z^{\frac{1}{2}},$$

справедливы соотношения

$$\begin{aligned} |Lz_{\varepsilon}| &\leqslant -L_{\varepsilon}\eta_{1}, \\ 0 &= z_{\varepsilon}|_{\Gamma_{1}^{-}} &< \eta_{1}, \qquad 0 &= z_{\varepsilon}|_{\Gamma_{1}^{+}} &< \eta_{1} \end{aligned}$$
 (5.72')

и при
$$y-y_0=(m_1-1)^{\frac{1}{2}\epsilon^{\frac{1}{2}}}$$
 и $y_1-y=(m_1-1)^{\frac{1}{2}\epsilon^{\frac{1}{2}}},$ $|z_\epsilon|\leqslant \eta_1,$ (5.74)

где $\Gamma_1^- = \Gamma^- \cap (y_0 + (m_1 - 1)^{\frac{1}{2}} \epsilon^{\frac{1}{2}} \leqslant y \leqslant y_1 - (m_1 - 1)^{\frac{1}{2}} \epsilon^{\frac{1}{2}}$, и аналогично определяется Γ_1^{+1}). В силу принципа максимума из (5.72'), (5.73) и (5.74) выте-

$$\widetilde{w}(\varphi) = \zeta\left(\frac{\varphi}{\varepsilon^{\beta}}\right) \zeta\left(\frac{\varphi_1}{\varepsilon^{\beta}}\right) w(0, \varphi),$$

 $v_1|_{\mathbf{P}}=0$. На Γ_1 $\zeta\left(\frac{\varphi}{\varepsilon^{\beta}}\right)=1$, так как $y-y_0\geqslant \varepsilon^{\frac{1}{2}}(m_1-1)^{\frac{1}{2}}$, и, значит, $\varphi\geqslant C_1\varepsilon^{\frac{1}{4}}$. Так

как $\beta > \frac{1}{4}$, то для достаточно малых $\epsilon \zeta \left(\frac{\varphi}{\epsilon^{\beta}}\right) = 1$, $\widetilde{w}(\varphi) = w(0, \varphi)$ и $(w + \widetilde{v}_{\epsilon})|_{\Gamma_1} = 0$, а вместе с тем и $z_{\epsilon}|_{\Gamma_1} = 0$.

¹) На $\Gamma_1^ z_{\epsilon}=0$ для достаточно малых ϵ , так как тогда на $\Gamma_1^ (\widetilde{v}_{\epsilon}+w)|_{\Gamma_1^-}=0$. Действительно, $\widetilde{v}_{\epsilon}=\zeta_1$ $(v_0+\epsilon v_1)$, v_0 мы строим по граничному значению

кает оценка

$$|z_{\varepsilon}| \leqslant \eta_{1} = \varepsilon M m_{1} ((y - y_{0})^{-\frac{3}{2}} + (y_{1} - y)^{-\frac{3}{2}})$$
 (5.75)

для $y-y_0\geqslant (m_1-1)^{\frac{1}{2}\frac{1}{2}}$ и $y_1-y\geqslant (m_1-1)^{\frac{1}{2}\frac{1}{2}}$. Оценки (5.67) и (5.75) можно объединить для таких y в одну общую оценку

$$|z_{\varepsilon}| \leqslant C \min \left[(y - y_0)^{\frac{1}{2}} + \frac{\varepsilon}{y - y_0}, (y_1 - y)^{\frac{1}{2}} + \frac{\varepsilon}{y_1 - y}, \varepsilon (y - y_0)^{-\frac{3}{2}}, \varepsilon (y_1 - y)^{-\frac{3}{2}} \right].$$
(5.76)

Для $y-y_0<(m_1-1)^{\frac{1}{2}\frac{1}{\epsilon^2}}$ и $y_1-y<(m_1-1)^{\frac{1}{2}\frac{1}{\epsilon^2}}$ ограничимся оценкой $|u_{\epsilon}-w|\leqslant C\left(y-y_0\right)^{\frac{1}{2}}(y_1-y)^{\frac{1}{2}},$

имеющей место в силу (5.66').

§ 6. Регулярные вырождения и итерационные процессы в случае уравнений в частных производных высших порядков

ec[2]

1. Общая постановка задачи. Мы рассмотрим общую задачу. В n-мерпом пространстве задана область Q с кусочно-гладкой границей Γ . Через L_s мы будем обозначать линейный дифференциальный оператор s-го порядка, действующий на функции $u\left(x\right)=u\left(x_1,\ \ldots,\ x_n\right)$, заданные в Q. Задача A_0 заключается в решепии дифференциального уравнения k-го порядка

$$L_h u = h \tag{6.1}$$

при граничных условиях, вообще говоря, разных на разных частях Γ_i $i=1,\ 2,\ \ldots,\ p$) границы Γ : на Γ_i

$$\frac{\partial^{s} u}{\partial n^{s}}\Big|_{\Gamma_{i}} = 0 \qquad (s = 0, 1, \dots, k_{i} - 1). \tag{6.2}$$

Задача A_{ε} заключается в решении уравнения более высокого k+l-го порядка

$$L_{\varepsilon}u \equiv L_{h}u + \sum_{s=1}^{l} \varepsilon^{s} L_{h+s}u = h \tag{6.3}$$

при граничных условиях (6.2) и дополнительных условиях: на Γ_i

$$\frac{\partial^{k_i+r} u}{\partial n^{k_i+r}}\Big|_{\Gamma_i} = 0 \qquad (r = 0, 1, \dots, l_i - 1)$$
 (6.4)

(числа $k_i,\ l_i,\$ вообще говоря, различны на разных частях Γ_i $(i=1,\ 2,\ \dots,\ p)$ границы Γ).

Примеры. В задачах §§ 1 и 2 граница состояла из двух частей (p=2): точек x=0 и x=1, для которых числа k_1 и k_2 , l_1 и l_2 были, говоря вообще, различными. В задаче п. 2 § 4 граница Γ состояла из двух частей: $\Gamma_1=\Gamma^+$, $\Gamma_2=\Gamma^-$; $k_1=1$, $l_1=0$; $k_2=0$, $l_2=1$.

Введем теперь, как мы это делали в § 4, местные координаты в окрестностях каждой части Γ_i границы. Положение точки A на Γ_i определяется координатами φ (φ_1 , ..., φ_{n-1}). Из каждой точки $A \in \Gamma_i$ проведем трансвер-6 успехи матем. взук, т. XII, вып. 5

-саль AB длины $\eta>0$ (т. е. вектор, направленный внутрь Q и образующий с касательной плоскостью угол, отличный от нулевого) так, чтобы система трансверсалей обладала степенью гладкости, отвечающей гладкости самого куска Γ_i , и чтобы при достаточно малом η трансверсали попарно не пересекались. Множество этих трансверсалей заполняет часть $Q_{\eta}^{(i)}$ области Q_{η} придегающую к Γ_i . Определим в $Q_{\tau_i}^{(i)}$ координаты ($\rho, \ \varphi_1, \ \dots, \ \varphi_{n-1}$). Если AB — трансверсаль из $Q_{\tau_i}^{(i)}$, выходящая из точки A с координатами φ ($\varphi_1,\ldots,\varphi_{n-1}$) на Γ_i , то для любой точки $C\in AB$ ее координаты ($\rho,\,\varphi_1,\,\ldots,\,\varphi_{n-1}$) определяются следующим образом: координата о означает ее расстояние до точки A, а $\varphi(\varphi_1,\ldots,\varphi_{n-1})$ —это координаты A на Γ_i . Уравнение $\varphi=0$ определяет Γ_i , а φ_i =const (i=1, 2, ..., n-1)—трансверсаль. В новой системе координат дифференциальные операторы s-го порядка перейдут в операторы того же порядка, которые будем по-прежнему обозначать через L_{ullet} . Имеем:

$$\varepsilon^{r}L_{k+r} = \varepsilon^{r} \left\{ a_{k+r} \left(\rho, \varphi \right) \frac{\partial^{k+r}u}{\partial \rho^{k+r}} + \sum_{j=1}^{k+r} \sum_{s \leq j} \sum_{(s)} b_{j,(s)} \left(\rho, \varphi \right) \frac{\partial^{k+r-j}}{\partial \rho^{k+r-j}} D^{(s)}u \right\}, \quad (6.5)$$

где (s) — набор неотрицательных чисел s_i ($i=1,\ 2,\ ...,\ n-1$): (s)=($s_1,\ ...,\ s_{n-1}$),

для которых
$$\sum_{i=1}^{n-1} s_i = s$$
, $D^{(s)} = \frac{\partial^s}{\partial \varphi_1^{s_1} \dots \partial \varphi_{n-1}^{s_{n-1}}}$.

Предполагая коэффициенты a_{k+r} , $b_{j,\,\mathrm{(s)}}$ соответствующее число раз дифференцируемыми по ho, представим a_{h+r} в виде конечного степенного ряда по hoс остаточным членом N+1-го порядка, именно: если $a_{k+r}(\varphi)=a_{k+r}(0,\varphi)$, то

$$a_{k+r}(\rho, \varphi) = a_{k+r}(\varphi) + \sum_{\sigma=1}^{N} a_{k+r,\sigma}(\varphi) \rho^{\sigma} + c_{k+r}(\rho, \varphi) \rho^{N+1}$$
 (6.6)

и аналогично, если
$$b_{j, (s)}(0, \varphi) = b_{j, (s)}(\varphi)$$
, то
$$b_{j, (s)}(\rho, \varphi) = b_{j, (s)}(\varphi) + \sum_{\sigma=1}^{N-j} b_{j, (s), \sigma}(\varphi) \rho^{\sigma} + d_{k+r, j, (s)}(\rho, \varphi) \rho^{N-j+1}.$$
 (6.6')

Заменим координату ρ на $t=\frac{\rho}{\epsilon}$, тогда $\frac{\partial^p}{\partial \rho^p}=\epsilon^{-p}\frac{\partial^p}{\partial t^p}$ и в силу (6.6) и (6.6')

$$a_{k+r}(\rho, \varphi) \frac{\partial^{k+r} u}{\partial \rho^{k+r}} = \varepsilon^{-(k+r)} \left[a_{k+r}(\varphi) + \sum_{\sigma=1}^{N} \varepsilon^{\sigma} t^{\sigma} a_{k+r, \sigma}(\varphi) + \varepsilon^{N+1} t^{N+1} c_{k+r}(\rho, \varphi) \right] \frac{\partial^{k+r} u}{\partial t^{k+r}},$$

$$(6.7)$$

$$b_{j, (s)} (\rho, \varphi) \frac{\partial^{k+r-j}}{\partial \rho^{k+r-j}} D^{(s)} u = \varepsilon^{-(k+r)+j} \left[b_{j, (s)} (\varphi) + \sum_{k=1}^{N-j} \varepsilon^{\sigma} t^{\sigma} b_{j, (s), \sigma} (\varphi) + \varepsilon^{N-j+1} t^{N-j+1} d_{k+r, j, (s)} (\rho, \varphi) \right] \frac{\partial^{k+r-j}}{\partial t^{k+r-j}} D^{(s)} u.$$
 (6.7')

Из (6.5), (6.7) и (6.7') следует:

$$\varepsilon^{r}L_{k+r}u = \varepsilon^{-k} \left\{ a_{k+r} \left(\varphi \right) \frac{\partial^{k+r}u}{\partial t^{k+r}} + \varepsilon L_{k+r}^{(1)}u + \ldots + \varepsilon^{N}L_{k+r}^{(N)}u + \varepsilon^{N+1}L_{k+r}^{(N+1)}u \right\}, \tag{6.8}$$

где

$$L_{k+r}^{(1)}u = ta_{k+r, 1}(\varphi) \frac{\partial^{k+r}u}{\partial t^{k+r}} + \sum_{s=0}^{1} b_{1, (s)}(\varphi) \frac{\partial^{k+r-1}u}{\partial t^{k+r-1}} D^{(s)}u$$

и вообще $L_{k+r}^{(i)}$, $i \leq N$ — линейные дифференциальные операторы относительно t, φ с коэффициентами при производных вида c (φ) t^{j} , $0 \leq j \leq i$, c (φ) — функции φ .

Наконец, коэффициенты оператора $L_{k+r}^{(N+1)}$ имеют вид $c_{k+r}(\rho, \varphi) t^{N+1}$, d_{k+r} , j, (s) $(\rho, \varphi) t^{N+1-j}$, где c_{k+r} и d_{k+r} , j, (s) — независимые от ε ограниченные функции от ρ , φ (см. (6.7), (6.7')).

Из (6.8) следует:

$$L_{\varepsilon}u = \sum_{r=0}^{l} \varepsilon^{r} L_{k+r} u = \varepsilon^{-k} \{ M_{0}u + \sum_{j=1}^{N} \varepsilon^{j} R_{j}u + \varepsilon^{N+1} R_{N+1}u \}, \tag{6.9}$$

где

$$M_0 u = \sum_{r=0}^{l} a_{k+r} \left(\varphi \right) \frac{\partial^{k+r} u}{\partial \ell^{k+r}}$$
 (6.10)

— дифференциальный оператор по t с не зависящими от t коэффициентами. В линейных операторах $R_j,\ i\leqslant N$ коэффициенты имеют вид $\sum_{j\leqslant i}f_j(\mathbf{p})t^j,$

в R_{N+1} — вид $\sum_{j\leqslant N+1} d_j\left(
ho,\,arphi
ight)t^j$, где $d_j\left(
ho,\,arphi
ight)$ — не зависящие от arphi функции $ho,\,arphi$.

Сохраняя терминологию § 2, назовем алгебраическое уравнение

$$\lambda^{h} Q_{\varphi} (\lambda) = \sum_{r=0}^{\mathbf{l}} a_{h+r} (\varphi) \lambda^{h+r} = 0$$
 (6.11)

дополнительным характеристическим уравнением в точке φ части Γ_i границы Γ . Мы скажем: вырождение задачи A_{ϵ} в задачу A_0 регулярно, если в каждой внутренней точке каждой части Γ_i границы Γ число корней дополнительного характеристического уравнения с от рицательной вещественной частью совпадает с числом l_i условий (6.4) задачи A_{ϵ} , выпадающих при переходе к задаче A_0 .

Мы проведем дальнейшие рассмотрения сначала для случая, когда $k=2k_1$ и $l=2l_1$ —числа четные и задачи A_{ε} и A_0 суть первые краевые задачи для эллиптических уравнений порядка $2\left(k_1+l_1\right)$ и $2k_1$. В этом случае граничные условия (6.2) и (6.4) имеют одинаковый вид для всей границы (число p частей Γ_i равно 4: $\Gamma_1=\Gamma$).

2. Вырождение эллиптических уравнений в эллиптические. Итак, пусть задача $A_{\mathbf{0}}$ есть первая краевая задача для эллиптического уравнения порядка $2k_{\mathbf{1}}$

$$L_{2h_1} u = h (6.1')$$

при граничных условиях

$$\frac{\partial^s u}{\partial n^s}\Big|_{\Gamma} = 0 \qquad (s = 0, 1, \dots, k_1 - 1). \tag{6.2'}$$

3адача $A_arepsilon$ заключается в решении эллиптического уравнения

$$L_{\epsilon}u = \sum_{r=0}^{2l_1} \dot{\epsilon}^r L_{2h_1+r} u = h \tag{6.3'}$$

порядка $2(k_1+l_1)$ при граничных условиях (6.2') и дополнительных граничных условиях

$$\frac{\partial^{k_1+r} u}{\partial n^{k_1+r}} \Big|_{v} = 0 \qquad (r = 0, 1, ..., l_1 - 1). \tag{6.4'}$$

Эллиптичность L_{ϵ} означает эллиптичность старшего оператора $L_{2(k_1+l_1)}$. Считая границу Γ достаточно гладкой, можно построить единую полосу Q_{η} , заполненную трансверсалями длины η . (В качестве трансверсалей можно взять, например, в данном случае нормали к Γ .) В этой полосе введем, как указывалось выше, систему координат (ρ, φ) $(\varphi(\varphi_1, \dots, \varphi_{n-1}))$, в которой уравнением Γ будет $\rho = 0$; заменяя ρ координатой $t = \frac{\rho}{\epsilon}$, получим разложение (6.9) оператора L_{ϵ} в окрестности Γ :

$$L_{\varepsilon}u = \varepsilon^{-2h_1} (M_0 u + \sum_{r=0}^{N} \varepsilon^{j} R_j u + \varepsilon^{N+1} R_{N+1} u), \qquad (6.9')$$

$$M_0 n = \sum_{r=0}^{2l_1} a_{2k_1+r}(\varphi) \frac{\partial^{2k_1+r} u}{\partial t^{2k_1+r}}.$$
 (6.10')

Регулярность вырождения в нашем случае означает: дополнительное характеристическое уравнение в каждой точке ф границы, принимающее вид

$$P_{2(k_1+l_1)}(\lambda) = \lambda^{2k_1} Q_{\varphi}(\lambda) = \sum_{r=0}^{2l_1} a_{2k_1+r}(\varphi) \lambda^{2k_1+r} = 0, \tag{6.11'}$$

имеет ровно l_1 корней с отрицательными вещественными частями, т. е. столько, сколько условий (6.4') задачи A_z выпадает при переходе к задаче A_0 . Мы считаем, что выполнены следующие условия:

1) Задача A_0 разрешима: например, при любой правой части $h \in \mathcal{L}_2$ уравнение (6.1') при граничных условиях (6.2') имеет решение w, $\|w\|_1 \leqslant C \|h\|$, C—констапта (это значит, что 0 не является собственным значением оператора L_{2h_1} при условиях (6.2')); $\|\cdot\|_1$ —норма, вообще говоря, более сильная, чем норма $\|\cdot\|$.

(6.11) Вырождение задачи A_{ε} в задачу A_{0} — регулярное, т. е. уравнение (6.11) имеет ровно l_{1} корпей с отрицательными вещественными частями.

(III) Задачи A_{ϵ} равномерно разрешимы, т. е. они для всех достаточно малых ϵ и для любого h, например из \mathcal{L}_{2} , имеют решение u_{ϵ} , причем

$$||u_{\varepsilon}||_{2} \leqslant C_{1} ||h||, \tag{6.12}$$

где $C_1>0$ не зависит от ε и от h, $\|\ \|_2$ — норма, вообще говоря, более сильная, чем норма $\|\ \|$ в \mathcal{L}_2 и чем норма $\|\ \|_1$. (Подробнее об этом см. § 7.)

(IV) Решения задачи A_0 при достаточно гладких правых частях настолько гладки, что к ним можно применять те операции, о которых идет речь ниже.

Требование IV будет выполняться, если граница Г, коэффициенты оператора L_{2h_1} и правые части достаточно гладкие. В следующем параграфе будут приведены условия, достаточные для выполнения I—IV.

При выполнении условий I-1V проходит итерационный процесс, аналогичный описанному в § 2 (и § 5), заключающийся в последовательном получении функций w_i , v_i , α_i ($i=0,1,\ldots$) таких, что решение u_{\bullet} задачи A_{\circ} представляется в виде

$$u_{\varepsilon} = w_0 + \left(\sum_{s=1}^m \varepsilon^s w_s + \sum_{r=0}^N \varepsilon^{r+1} \alpha_r + \sum_{r=0}^N \varepsilon^r v_r\right) + z_m, \tag{6.13}$$

при этом

$$||L_{\mathfrak{s}}z_m|| = O\left(\mathfrak{s}^{m+1}\right) \tag{6.14}$$

(в данном случае следует взять $N=m+k_1$). w_0 определяется (ср. § 2) как решение задачи A_0 :

$$L_{2h} w_0 = h \tag{6.15}$$

при граничных условнях (6.2'). Но w_0 не удовлетворяет условиям (6.4'). v_0 есть функция типа погранслоя, компенсирующая певязки в выполнении этих условий функцией w_0 . Именно, v_0 есть решение типа погранслоя дифференциального уравнения с постоянными относительно t коэффициентами

$$M_0 v_0 = \sum_{r=0}^{2l_1} a_{2k_1+r} \frac{\partial^{2k_1+r} v_0}{\partial t^{2k_1+r}} = 0.$$
 (6.16)

Характеристическим уравнением для дифференциального уравнения (6.16) является уравнение (6.11').

Условне регулярности означает: уравнение (6.11') имеет l_1 корней $-\lambda_1, \ldots, -\lambda_{l_1}$ с отрицательными вещественными частями ($\lambda_i = \lambda_i$ (φ) зависят от φ). Этим корням отвечают (мы предполагаем для простоты эти корни простыми) частные решения тала погранслоя уравнения (6.16)

$$\exp\left(-\lambda_{i}t\right) = \exp\left(-\lambda_{i}\frac{\rho}{\varepsilon}\right).$$

Общее решение v_0 уравнения (6.16) типа погранслоя имеет вид

$$v_0 = \varepsilon^{k_1} \sum_{i=1}^{l_1} c_i \exp\left(-\lambda_i t\right) = \varepsilon^{k_1} \sum_{i=1}^{l_1} c_i \exp\left(-\lambda_i \frac{\rho}{\varepsilon}\right),$$

где $c_i=c_i$ (ϕ) зависят от ϕ . Коэффициенты c_i (ϕ) находятся, как и в § 2, из l_1 условий компенсации невязок w_0 в выполнении граничных условий (6.4'):

$$\frac{\partial^{k_1+r}(\omega_0+v_0)}{\partial \rho^{k_1+r}}\bigg|_{\rho=0} \equiv e^{-(k_1+r)} \frac{\partial^{k_1+r}(\omega_0+v_0)}{\partial t^{k_1+r}}\bigg|_{t=0} = 0$$

$$(r=0, 1, \dots, l_1-1).$$
(6.17)

Записав v_0 в виде

$$v_0 = \varepsilon^{k_1} \overline{v_0} = \varepsilon^{k_1} \sum_{j=1}^{l_1} c_j \exp(-\lambda_j t),$$
 (6.17')

получим для определения $c_j = c_j \left(\varphi \right)$ систему уравнений, вытекающую из (6.17):

$$\frac{\partial^{h_1+r}\overline{v_0}}{\partial t^{h_1+r}}\bigg|_{t=0} = -\varepsilon^{-h_1}\frac{\partial^{h_1+r}w_0}{\partial t^{h_1+r}}\bigg|_{t=0} = -\varepsilon^r\frac{\partial^{h_1+r}w_0}{\partial \rho^{h_1+r}}\bigg|_{\rho=0}$$

$$(r=0, 1, \ldots, l_1-1),$$

откуда

$$\sum_{j=0}^{l_1} (-\lambda_j)^{k_1+r} c_j = -\varepsilon^r \left. \frac{\partial^{k_1+r} w_0}{\partial \rho^{k_1+r}} \right|_{\rho=0} (r=0, 1, \ldots, l_1-1). \tag{6.17''}$$

Система (6.17") — такая же, как система (2.17) в § 2 (с той лишь разницей, что теперь $\lambda_i = \lambda_i$ (φ) — функции φ). Найденные из этой системы $c_i = c_i$ (φ) суть ограниченные и дифференцируемые до определенного порядка функции φ .

Далее, α_0 определяется в Q_η как многочлен (k_1-1) -й степени относительно р такой, что $w_0+v_0+\varepsilon\alpha_0$ удовлетворяет всем условиям (6.2'), (6.4') (см. § 2), т. е.

$$\varepsilon \alpha_0(\rho, \varphi) = -\varepsilon^{k_1} \sum_{j=1}^{l_1} c_j(\varphi) \left(1 - \frac{\lambda_j \rho}{\varepsilon} + \frac{\lambda_j^2 \rho^2}{2!\varepsilon^2} - \ldots + (-1)^{k_1 - 1} \frac{(\lambda_j \rho)^{k_1 - 1}}{(k - 1)!\varepsilon^{k_1 - 1}}\right).$$

Затем $\epsilon \alpha_0$ заменяем функцией $\epsilon \psi \left(\frac{\rho}{\eta} \right) \alpha_0$, которую по-прежнему обозначаем через α_0 .

Мы ищем решение u_{ε} задачи A_{ε} в виде (6.13)

$$u_{\varepsilon} = \left(w_0 + \sum_{s=1}^m \varepsilon^s w_s\right) + \sum_{s=0}^N \varepsilon^s \left(v_s + \varepsilon a_s\right) + z_m,$$

и уравнение (6.3) записываем, пользуясь (6.9), в виде

$$h = L_{\varepsilon}u_{\varepsilon} \equiv L_{\varepsilon}\left(w_{0} + \sum_{s=1}^{m} \varepsilon^{s}w_{s} + \sum_{s=0}^{N} \varepsilon^{s+1}\alpha_{s}\right) + L_{\varepsilon}\left(\sum_{s=0}^{N} \varepsilon^{s}v_{s}\right) + L_{\varepsilon}z_{m} \equiv$$

$$\equiv \left\{\left(L_{2k_{1}} + \sum_{s=1}^{2l_{1}} \varepsilon^{s}L_{2k_{1}+s}\right)\left(\sum_{s=0}^{m} \varepsilon^{s}w_{s} + \sum_{s=0}^{N} \varepsilon^{s+1}\alpha_{s}\right)\right\} +$$

$$+ \varepsilon^{-k_{1}}\left\{\left(M_{0} + \sum_{s=1}^{N+1} \varepsilon^{s}R_{s}\right)\left(\sum_{s=0}^{N} \varepsilon^{s}\overline{v}_{s}\right)\right\} + L_{\varepsilon}z_{m} \quad (6.18)$$

(здесь $v_s = \varepsilon^{k_1} v_s$). Соединяя члены при ε^i (0 $< i \le m$) в первых фигурных скобках и приравнивая их нулю, получаем:

$$L_{2h_1} w_i = -\sum_{s=1}^{[i]} L_{2h_1+s} w_{i-s} - \sum_{s=0}^{[i]} L_{2h_1+s} \alpha_{i-s-1},$$

$$[i] = \min(i, 2l_1) \quad (i = 1, 2, ..., m).$$

$$(6.19)$$

В качестве w_i берем решение этого уравнения, удовлетворяющее условиям (6.2%).

Аналогично, соединяя члены при одинаковых степенях ε^{i-k_1} во вторых фигурных скобках, получаем:

$$M_0 \bar{v}_i = -\sum_{s=1}^i R_s \bar{v}_{i-s}. \tag{6.20}$$

Если w_{j-1} , α_{j-1} , $v_{j-1} = \varepsilon^{k_1} v_{j-1}$ известны, то из (6.19) и из требования, чтобы w_i удовлетворяла граничным условиям (6.2'), находим w_i . Далее, находим $v_i = \varepsilon^{k_1} v_i$ из уравнения (6.20) и из требования, что $w_i + v_i$ удовлетворяет l_1 условиям (6.4') и что v_i есть функция типа погранслоя. v_i находится так же, как в § 2, и имеет вид (6.17'), с той, однако, разницей, что коэффициенты при экспонентах суть многочлены от t; v_i , как и v_0 , оказывается функцией типа погранслоя k_1 -го порядка. α_i есть многочлен степени k_1-1 от ρ , такой, что $v_i+\varepsilon\alpha_i$ удовлетворяет условиям (6.2'). Следовательно,

$$w_i + v_i + \varepsilon \alpha_i \tag{6.21}$$

удовлетворяют всем граничным условиям (6.2'), (6.4'). При i > m граничные условия для v_i заменяются требованием, чтобы v_i удовлетворяло однородным условиям (6.4') (ср. § 2).

Далее, функцию α_i заменяем на $\psi\left(\frac{\rho}{\eta}\right)\alpha_i$, сохранив для новой функции прежнее обозначение.

Построив функции w_i $(i=0,1,\ldots,m)$ и α_i $(i=0,1,\ldots,m-1)$, мы добьемся того (см. (6.19)), что в первых фигурных скобках формулы (6.18) уничтожатся все члены при ε^s $(0 < s \leqslant m)$, т. е. останется выражение вида $h+O(\varepsilon^{m+1})$. Точно так же во вторых фигурных скобках, если построены v_i , $i \leqslant N$ (см. (6.20)), уничтожатся все члены при $\varepsilon^{s-h_1}(s \leqslant N)$ и останется выражение порядка ε^{N-h_1+1} . Если положить

$$N=m+k_1$$

то в обеих фигурных скобках останутся лишь выражения порядка ε^{m+1} . Доопределим теперь функции v_i , считая их равными нулю в $Q-Q_\eta$. Для того чтобы сделать эти функции гладкими в Q, умножим их в Q_η на сглаживающий множитель $\psi\left(\frac{\rho}{\eta}\right)$. Функции v_i остались без изменения в нолосе $0\leqslant \rho\leqslant \frac{\eta}{3}$. В полосе же $\frac{\eta}{3}\leqslant \rho\leqslant \eta$ экспоненты $\exp\left(-\lambda_i\frac{\rho}{\varepsilon}\right)$, равно как и их производные любого порядка, будут величинами порядка выше ε^{m+1} . От умножения этих экспонент на функцию $\psi\left(\frac{\rho}{\eta}\right)$ с ограниченными производными порядок их и их производных не понизится. Следовательно, в полосе $\frac{\eta}{3}\leqslant \rho\leqslant \eta$ $L_\varepsilon\left(\sum_{s=0}^{m+h_1}\varepsilon^s v_s\right)$ останется величиной порядка выше ε^{m+1} . В $Q-Q_\eta$ это выражение равно 0.

Итак,

$$L_{\varepsilon} \left(w_{0} + \sum_{s=1}^{m} \varepsilon^{s} w_{s} + \sum_{s=0}^{m+h_{1}} \varepsilon^{s+1} \alpha_{s} + \sum_{s=0}^{m+h_{1}} \varepsilon^{s} v_{s} \right) = h + \varepsilon^{m+1} \overline{g}_{m},$$

$$\| \overline{g}_{m} \| = O(1),$$
(6.22)

где || ||-- норма в некотором банаховом пространстве (см. § 7). Отсюда и из (6.18) следует:

$$L_{\varepsilon} z_m = \varepsilon^{m+1} g_m, \quad ||g_m|| = O(1) \quad (g_m = -\overline{g}_m).$$
 (6.22')

Так как u_{ϵ} и $w_i + v_i + \epsilon a_i$ удовлетворяют условиям (6.2') и (6.4'), то и z_m удовлетворяет этим условиям ($w_i\equiv 0$ при i>m).

Из предположения о равномерной разрешимости задач $A_{\mathfrak s}$ следует:

$$\|z_m\|_2 \leqslant O(\varepsilon^{m+1}).$$

Обозначая теперь

$$\varepsilon^{m+1} y_m - z_m + \sum_{s=m}^{m+k_1} \varepsilon^{s+1} \alpha_s,$$

получаем

$$||y_m|| = O(1).$$

 $\|y_m\|_{\mathbf{g}}=O(1).$ Если положить $\overline{w}_i=w_i+a_{i-1}$, то (6.13) примет следующий вид:

$$u_{z} = w_{0} + \sum_{s=1}^{m} \varepsilon^{s} \overline{w}_{s} + \sum_{s=0}^{m+h_{1}} \varepsilon^{s} v_{s} + \varepsilon^{m+1} y_{m}, \\ ||y_{m}||_{\mathbf{Z}} = O(1), \quad ||L_{z}y_{m}|| = O(1).$$

$$(6.23)$$

Функция \overline{w}_i будет (в силу (6.19)) решением уравнения

$$L_{2h_1}\overline{w}_i = -\sum_{s=1}^{[i]} L_{2h_1+s}\overline{w}_{i-s}. \tag{6.19'}$$

Для того чтобы наш итерационный процесс можно было проводить, нужно, чтобы решения w, уравнений (6.19) при граничных условиях (6.2') были настолько гладкими, чтобы к ним можно было применять операторы, стоящие справа в (6.19), и чтобы граничные значения этих решений были настолько гладкими, чтобы к определяемым ими функциям v_i можно было применять операторы из правой части (6.20).

Мы пришли к следующей теореме.

Теорема 10. При условиях I-IV решение u_{ε} задачи A_{ε} (6.3'), (6.2'), (6.4') допускает асимптотическое представление:

$$u_{z} = w_{0} + \sum_{s=1}^{m} z^{s} \overline{w}_{s} + \sum_{s=0}^{m+k_{1}} z^{s} v_{s} + z^{m+1} y_{m}, \qquad (6.23')$$

еде w_0 — решение вырожденной задачи A_0 (6.1'), (6.2'), $\overline{w}_i=w_i+a_{i-1}$, w_i — решения уравнения (6.19) при граничных условиях (6.2'), $v_s = z^h \overline{v}_s - \phi y$ нкции типа погранслоя, получаемые как решения обыкновенных дифференциальных уравнений (6.16) и (6.20) с постоянными относительно t коэффициентами при соответствующих граничных условиях, а для невязки $\varepsilon^{m+1}y_m$ имеем:

$$\mathbf{e}^{m+1} \parallel y_m \parallel_2 = \mathbf{e}^{m+1} O(1), \parallel L_{\mathbf{e}} y_m \parallel = O(1).$$

3. Общий случай. Вернемся к общему случаю, рассмотренному в начале параграфа.

Мы считаем, что граница Γ разбита на части Γ_i ($i=1, 2, \ldots, p$), в окрестности каждой из которых введены соответствующие системы координат (ρ, φ) $(\varphi, (\varphi_1, \ldots, \varphi_{n-1}))$, при этом:

- 1) Каждое Γ_i удовлетворяет соответствующим условиям гладкости; (n-2)-мерное множество \mathfrak{D} , разделяющее эти части, тоже кусочно-гладкое.
- 2) На каждом куске Γ_i заданы k_i условий (6.2) задачи $A_{\mathbf{0}}$ и l_i дополнительных условий (6.4) задачи $A_{\mathbf{c}}$.
- 3) На каждом из кусков Γ_i для точек φ , внутренних к Γ_i , коэффициенты $a_k(\varphi)$ и $a_{k+l}(\varphi)$ главных частей операторов L_k и L_{k+l} , записанных в координатах (φ, φ) , при старших производных по трансверсальному направлению φ сохраняют постоянный знак.

Предполагая разрешимость задачи A_0 достаточную гладкость полученных решений (вне $\mathfrak D$) и регулярность вырождения задачи $A_{\mathfrak e}$ в задачу A_0 , можно строить, так же, как это сделано в § 2 и в п. 2 настоящего параграфа, последовательность функций w_i , v_i , a_i . При этом w_0 —решение задачи A_0 : $L_k w_0 = h$ при условиях (6.2); v_0 —решение типа погранслоя уравнения $M_0 v_0 = 0$, компенсирующее невязки в выполнении условий (6.4) у w_0 , т. е. $v_0 + w_0$ удовлетворяет условиям (6.4). Условие регулярности обеспечивает возможность построения v_0 . Как и выше, устанавливается, что v_0 является функцией типа погранслоя k_i -го порядка в окрестности Γ_i ($i=1,2,\ldots,p$); a_0 —многочлен порядка k_i —1 в окрестности Γ_i , такой, что $v_0 + w_0 + \varepsilon a_0$ удовлетворяет условиям (6.2) и (6.4). Далее, повторяя итерационный процесс, описанный выше, находим посл. довательно w_i , v_i , a_i . Функции v_i , a_i определяются незавиеимо в окрестностях разных кусков Γ_i .

В окрестности $\mathfrak D$ асимптотику u_z приходится, как правило, исследовать дополнительно (см. теорему 7 §§ 4, 5), так как на $\mathfrak D$ могут появиться особенности. Вне этой окрестности построенные функции v_i и α_i доопределяются, как в п. 2 настоящего параграфа, с помощью сглаживающих функций $\phi\left(\frac{p}{\eta}\right)$. Мы полагаем, что вне любой окрестности $V\left(\mathfrak D\right)$ разделяющего множества $\mathfrak D$ итерационный процесс проходит. Полагая, как в § 2, $N=m+\max_i (k-k_i)$, получим так же, как в п. 2, если z_m —невязка:

$$z_{m} = \varepsilon^{m+1} y_{m} = u_{\varepsilon} - \sum_{s=0}^{m} \varepsilon^{s} w_{s} - \sum_{s=0}^{N} \varepsilon^{s} v_{s} - \sum_{s=0}^{N} \varepsilon^{s+1} \alpha_{s},$$

$$||L_{\varepsilon} y_{m}||' = O(1); \tag{6.24}$$

через $\| \ \|'$ обозначена некоторая банахова норма функций в области $Q-V\left(\mathfrak{D}\right)$. Лишь при дополнительных условиях, как мы видели в § 4, можно норму $\| \ \|'$ заменить в (6.24) нормой, взятой по Q. Если для задач $A_{\mathfrak{s}}$ выполняется условие равномерной разрешимости, то из (6.24) при определенных условиях можно заключить, что $\| \ z_m \|_2' = \| \ \varepsilon^{m+1} y_m \|_2' = O\left(\varepsilon^{m+1}\right)$, где $\| \ \|_2'$ — норма, вообще говоря, другая, чем норма $\| \ \|'$, но также взятая по подобласти $Q-V\left(\mathfrak{D}\right)$. В этом смысле окажется тогда справедливой и теорема 10 (см. § 8).

- 4. Погранслой, определяемый уравнением в частных производных. В ряде случаев, как мы уже видели (§ 4, п. 5), на одной из частей границы $\Gamma_i \quad a_{k+l}(\mathbf{\varphi}) \equiv 0$ или $a_k(\mathbf{\varphi}) \equiv 0$. Это означает, что Γ_i есть характеристическое многообразие для оператора L_{k+l} или L_k . В качестве главной части M_0 оператора L_{ε} , записанного в координатах (ρ, φ) вблизи Γ_i , при расщеплении типа (6.9) мы уже в этом случае не получим, вообще говоря, обыкновенного дифференциального оператора по трансверсальному направлению. В оператор $M_{
 m o}$ могут входить и члены, содержащие дифференцирование по φ_i (см. § 4 и ниже § 8). Таким образом, уравнение $M_0 v_0 = 0$ и аналогичные уравнения для определения v_s (в окрестности Γ_i) могут превратиться в уравнения в частных производных, но в более простые, чем исходное уравнение. Регулярность вырождения при этом означает, что краевая задача для уравнения $M_{
 m o}v_{
 m o}=0$, связанная ${f c}$ погашением невязок w_0 в граничных условиях на Γ_i , имеет решение типа пограничного слоя. В настоящей статье мы не даем общего анализа регулярных вырождений такого рода. В § 8 мы решим ряд задач с погранслоями, определяемыми уравнениями в частных производных.
- 5. Явления внутреннего пограничного слоя. Как указано было во введении, явления типа погранслоя возникают не только вблизи границы Γ области Q, но и внутри Q. Это имеет место в том случае, когда решение предельной задачи A_0 имеет вдоль некоторого многообразия $\mathfrak D$ разрыв или разрыв своих производных, отсутствующий у решений допредельной задачи. Проиллюстрируем это явление на конкретном примере. Задача A_{ε} состоит в решении уравнения

$$L_{\varepsilon}u_{\varepsilon} \equiv \varepsilon^{2}\Delta u_{\varepsilon} - u_{\varepsilon} = h(x, y) \tag{6.25}$$

при граничном условии

$$u|_{\mathbf{r}}=0. ag{6.26}$$

Предельная задача A_0 есть решение уравнения

$$L_0 \omega_0 \equiv -\omega_0 = h(x, y), \tag{6.27}$$

т. е. $w_0 = -h\left(x,\ y\right)$. Пусть $h\left(x,\ y\right)$ кусочно-гладкая функция, имеющая разрыв первого рода только вдоль отрезка CD прямой y=0. Для простоты будем считать CD лежащим строго внутри Q. Поскольку u_{ϵ} непрерывно дифференцируемо в \overline{Q} , то $u_{\epsilon}-w_0$ терпит разрыв вместе с производными первого порядка на отрезке CD. Поэтому в асимптотике u_{ϵ} должен, кроме w_0 , еще фигурировать член $\eta_{\epsilon}(x,y)$, компенсирующий разрыв w_0 и ее производных. Будем искать η_{ϵ} в виде: при y>0 $\eta_{\epsilon}=\phi\left(x\right)e^{\frac{y}{\epsilon}}$, при y<0 $\eta_{\epsilon}=\phi\left(x\right)e^{\frac{y}{\epsilon}}$), где $\phi\left(x\right)$ и $\phi\left(x\right)$ определим ниже. Введем обозначение

$$[F] = F(x, +0) - F(x, -0).$$

¹⁾ Отметим, что η_{ϵ} —функция типа погранслоя, найденная при y>0 и y<0 как решение обыкновенного уравнения $M_0v\equiv \frac{d^2v}{dt^2}-v\equiv \epsilon^2\frac{d^2v}{dy^2}-v\equiv 0$ ($\frac{y}{\epsilon}=t$), являющегося главной частью (6.25) в разложении вида (6.9').

Функции $\varphi(x)$ и $\psi(x)$ определим из условия: функция $w_0 + \eta_s$ непрерывна и гладка в Q, т. е.

$$[w_0 + \eta_{\epsilon}] = \left[\frac{\partial}{\partial y}(w_0 + \eta_{\epsilon})\right] = 0.$$

Отсюда следует:

$$-[w_0] = \varphi(x) - \psi(x),$$

$$-\left[\frac{\partial w_0}{\partial y}\right] = -\frac{1}{\varepsilon}(\varphi(x) + \psi(x)),$$

т. е.

$$\varphi\left(x\right) = -\frac{1}{2} \left[w_0 - \varepsilon \frac{\partial w_0}{\partial y} \right], \quad \psi\left(x\right) = \frac{1}{2} \left[w_0 + \varepsilon \frac{\partial w_0}{\partial y} \right].$$

Обозначим

$$\tilde{w} = w_0 + \eta_{\varepsilon} + v_{\varepsilon},$$

где v_{ε} — функция типа погранслоя вблизи Γ , компенсирующая невязку в выполнении граничного условия (6.26) функцией $w_0 + \eta_{\varepsilon}$, т. е. $v_{\varepsilon}|_{\Gamma} = -(w_0 + \eta_{\varepsilon})|_{\Gamma}$, причем $L_{\varepsilon}v_{\varepsilon} = O(\varepsilon^2)$. Функция \widetilde{w} непрерывно дифференцируема в Q, причем вне CD:

$$\begin{split} L_{\epsilon}\widetilde{w} &= L_{\epsilon} \left(w_{0} + \eta_{\epsilon} + v_{\epsilon}\right) = \{L_{\epsilon}w_{0}\} + \{L_{\epsilon}\eta_{\epsilon}\} + L_{\epsilon}v_{\epsilon} = \\ &= \epsilon^{2} \left\{\Delta w_{0}\right\} - w_{0} + \epsilon^{2} \left\{\frac{\partial^{2}\eta_{\epsilon}}{\partial y^{2}}\right\} - \eta_{\epsilon} + \epsilon^{2} \frac{\partial^{2}\eta_{\epsilon}}{\partial x^{2}} + L_{\epsilon}v_{\epsilon} = h\left(x, y\right) + O\left(\epsilon^{2}\right), \end{split}$$

где $\{\ \}$ означает значение соответствующего выражения в классическом смысле (т. е. без учета δ -функций на CD). Если через \mathbf{z}_{ϵ} обозначить остаточный член:

$$z_{\epsilon} = u_{\epsilon} - (w_0 + \eta_{\epsilon} + v_{\epsilon}),$$

то

$$L_{\mathbf{\epsilon}}z_{\mathbf{\epsilon}}=O\left(\mathbf{\epsilon}^{2}
ight),$$

причем на границе f $z_{\varepsilon}=0$. Отсюда

$$||z_{\varepsilon}|| + \varepsilon ||D^{1}z_{\varepsilon}|| + \varepsilon^{2} ||D^{2}z_{\varepsilon}|| = O(\varepsilon^{2})$$

(нормы берутся в \mathcal{L}_{2}).

С помощью итерационного процесса можно получить более далеко идущую асимптотику.

Это построение имеет общий характер и может быть использовано для уравнений других типов и для уравнений высших порядков. Заметим, что в некоторых случаях могут появляться явления внутреннего параболического пограничного слоя.

§ 7. Регулярное вырождение эллиптических операторов высшего порядка в эллиптические

1. Вернемся теперь к рассмотренному частично в предыдущем параграфе вопросу о вырождении первой краевой задачи для эллиптического уравнения

$$L_{\epsilon}u \equiv L_{2k_1}u + \sum_{s=1}^{2l_1} \epsilon^s L_{2k_1+s}u = h \tag{7.1}$$

при условиях (6.2'), (6.4') (задача $A_{\rm s}$) в первую краевую задачу для эллиптического уравнения

$$L_{2h_1}u = h \tag{7.2}$$

при условиях (6.2') (задача A_0).

По аналогии с § 3 введем обобщенную характеристическую форму

$$\pi_{\varepsilon}(\xi; x) \equiv \sum_{s=0}^{2l_1} \varepsilon^s \pi_{2k_1+s}(\xi; x),$$
(7.3)

где π_j ($\xi; x$) есть характеристическая форма оператора L_j в точке x; $\xi = (\xi_1, \ldots, \xi_n).$ π_j ($\xi; x$) получается заменой в L_j всякого члена старшего порядка j $a_{i_1 \ldots i_n}(x) \frac{\partial^j}{\partial x_1^{i_1} \ldots \partial x_{j_n}^{i_n}}$ выражением $a_{i_1 \ldots i_n}(x) (i\xi_1)^{i_1} \ldots (i\xi_n)^{i_n}$.

Основная теорема об асимптотике для нашей задачи доказана в § 6 в предположениях: а) разрешимости задач A_0 , б) регулярности вырождения задачи A_{ϵ} в задачу A_0 , в) равномерной разрешимости задач A_{ϵ} , г) достаточной гладкости решений этих задач.

Отметим, что для задачи A_0 достаточным условием разрешимости (и единственности) является позитивность соответствующей квадратичной формы оператора L_{2k_1} : $(L_{2k_1}w, w) \gg \alpha^2(w, w)$, где w удовлетворяет условиям (6.2'), а достаточным условием равномерной резрешимости задач A_{ε} является выполнение такого же условия: $(L_{\varepsilon}u, u) \gg \alpha^2(u, u)$ для всех достаточно малых ε , где α^2 не зависит от u и ε (условие равномерной позитивности), а u удовлетворяет условиям (6.2'), (6.4') (см. [49]).

Ниже приводим достаточные условия равномерной позитивности, а значит, равномерной разрешимости задач A_{ϵ} (для одномерного случая соответствующая теорема доказана в § 3).

Сейчас мы приведем достаточные условия регулярности вырождения задачи $A_{\mathfrak s}$ в задачу $A_{\mathfrak o}$, пменно:

. Лемма 8. Для регулярности вырождения задачи A_{ϵ} в задачу $A_{\mathbf{0}}$ достаточно, чтобы вещественная часть обобщенной характеристической формы была положительна, точнее:

Re
$$\pi_{\epsilon}(\xi; x_0) \equiv \sum_{j=0}^{l_1} \epsilon^{2j} \pi_{2(h_1+j)}(\xi; x_0) \geqslant C \sum_{j=0}^{l_1} \epsilon^{2j} |\xi|^{2(h_1+j)},$$
 (7.4)

 $e\partial e$ C не зависит от $x_{\rm 0},\ x_{\rm 0}-$ любая точка границы $\Gamma.$

Доказательство. Как и в § 6, введем в окрестности границы систему координат (φ_1 , φ_2 , ..., φ_{n-1} , ρ) и сохраним прежние обозначения для операторов L_{ϵ} , L_{2k_1+s} и форм π_{ϵ} и π_{2k_1+s} , записанных в новых координатах; $x_0 = (\varphi_1^0, \ldots, \varphi_{n-1}^0; 0)$. Очевидно, условие (7.4) инвариантно по отношению к замене координат. Пусть координата ξ_n отвечает ρ , а ξ_i при i < n отвечают φ_i . Полагаем в π_{ϵ} $\xi_1 = \ldots = \xi_{n-1} = 0$, другими словами, мы в каждой форме π_{2k_1+s} сохраняем лишь член $a_{2k_1+s}(\varphi^0) (i\xi_n)^{2k_1+s}$, $\varphi^0 = (\varphi_1^0, \ldots, \varphi_{n-1}^0, 0)$, который отвечает члену $\epsilon^s a_{2k_1+s}(\varphi^0)$ $\frac{\partial^2 k_1 + s}{\partial \rho^{2k_1+s}}$ опера-

тора $L_{2k_1+oldsymbol{arphi}}$ Следовательно,

$$\pi_{\varepsilon}(0, \ldots, 0, \xi_n; x_0) = \sum_{s=0}^{2l_1} \varepsilon^s a_{2k_1+s}(\varphi^0) (i\xi_n)^{2k_1+s}. \tag{7.5}$$

Для введенного в § 6 дифференциального оператора $M_0v=\sum_{s=0}^{2l_1}a_{2k_1+s}\left(\varphi\right)\frac{\partial^{2k_1+s}v}{\partial t^{2k_1+s}}$ характеристический многочлен $P_{2(k_1+l_1)}\left(\lambda\right)$ имеет вид (6.11'):

$$P_{2(h_1+l_1)}(\lambda) = \lambda^{2h_1} Q_{\varphi}(\lambda) = \sum_{s=0}^{2l_1} a_{2h_1+s} (\varphi) \lambda^{2h_1+s}.$$
 (7.6)

Отсюда видно, что

$$\pi_{\varepsilon}(0, \ldots, 0, \xi_n; x_0) = \varepsilon^{-2k_1} P_{\varphi_0}(i\varepsilon\xi_n),$$
 (7.7)

где P_{φ_0} есть $P_{2(h_1+l_1)}(\lambda)$ в точке φ_0 . Условие (7.4) позитивности дает:

Re
$$\pi_{\varepsilon}(0, \ldots, 0, \xi_n; x_0) \geqslant C \sum_{j=0}^{l_1} \varepsilon^{2^j} |\xi|^{2(k_1+j)}$$
.

Отсюда и из (7.7) следует, что на мнимой оси характеристический многочлен $P_{2(k_1+l_1)}(\lambda)$ имеет положительную вещественную часть. А это, согласно лемме 4 § 3, означает, что многочлен $Q_{\varphi}(\lambda)$ имеет l_1 корней в левой полуплоскости, т. е. ровно столько, сколько граничных условий выпадает при переходе от задачи A_{z} к задаче A_{0} ; следовательно, имеет место регулярное вырождение.

Замечание. По существу мы использовали лишь позитивность $\text{Re}\,\pi_{\epsilon}\,(0,\ldots,\,0,\,\xi;\,x_0)$. Условие (7.4) означает, что регулярность вырождения задачи A_{ϵ} в задачу A_0 будет обпаруживаться при любом выборе трансверсального направления ρ .

Условия же равномерной разрешимости несколько более стеснительны, именно, имеет место

 Π емма 9. Если задача A_0 позитивна, точнее

$$(L_{2h_1}w, w) \geqslant \beta^2 \left(\sum (D^{h_1}w, D^{h_1}w) + (w, w) \right)^{-1}$$

$$(7.8)$$

для любой гладкой функции w, удовлетворяющей условиям (6.2'), и форма

$$\widetilde{\pi}_{\epsilon}(\xi; x) = \sum_{j=1}^{l_1} \epsilon^{2j} \pi_{2(h_1 + j)}(\xi; x) \geqslant \alpha^2 \sum_{j=1}^{l_1} \epsilon^{2j} |\xi|^{2(j+h_1)}, \tag{7.9}$$

где α^2 не зависит от ξ и x, то операторы A_{ϵ} равномерно позитивны, причем имеет место следующее энергетическое неравенство:

$$\sum_{|j|=1}^{l_1} \sum_{|k_1|=k_1} \hat{\epsilon}^{2j} \| D^{(k_1+j)} u \|^2 + \sum_{|i|=0}^{k_1} \| D^{(i)} u \|^2 \leqslant C_1 (L_{\epsilon} u, u) \leqslant C_2 \| h \|^{2 \cdot 2})$$
 (7.10)

для любых функций u, удовлетворяющих условиям (6.2'), (6.4'); $h=L_{\epsilon}u$. Доказательство этой леммы приведено в конце параграфа.

¹⁾ Отметим, что достаточно потребовать лишь выполнения перавенства ($L_{2k_1}w, w$) $\gg \gamma^2$ (w, w); из него уже следует (7.8), есля L_{2k_1} —равномерно по x эллиптический оператор

²) В правой части (7.10) можио норму $\| \ \|$ заменить нормой $\| \ \|_{-k_1}$ с отрицательным индексом $-k_1$ (см. [50]).

Следствие. При условиях леммы 9 имеет место: а) разрешимость задачи A_0 (это вытекает из условия (7.8) леммы 9); б) равномерная разрешимость задач A_s (это вытекает из равномерной позитивности операторов L_s в силу (7.10)); в) регулярность вырождения задачи A_s в задачу A_0 .

В самом деле, из эллиптичности оператора L_{2k_1} и (7.8) вытекает положительность формы $\pi_{2k_1}(\xi; x) \geqslant \alpha^2 |\xi|^{2k_1}$. Отсюда и из (7.9) вытекает (7.4), т. е., согласно лемме 8, регулярность вырождения.

Итак, итерационный процесс, приведший к теореме 10, пройдет, если решения задачи A_0 будут настолько гладкими, чтобы к ним можно было применять операторы, фигурирующие в формуле (6.19). Это уже обеспечит возможность построения функций v_i (см. (6.20)).

Для того чтобы имела место асимптотика (6.23), а также для того чтобы можно было (6.23) почленно p раз дифференцировать, оказывается достаточным потребовать, чтобы правая часть h принадлежала $W_2^{(2)}$, $\sigma = m + p + l_1$ и чтобы достаточно гладкими были коэффициенты и граница 1). Сейчас уже не возникает трудностей с точками касания характеристик с Γ , так как действительных характеристик в нашем случае нет.

Теорема 11. Пусть вещественная часть обобщенной характеристической формы $\pi_{\epsilon}(\xi; x)$ оператора L_{ϵ} положительна, т. е. выполнено (7.4), оператор L_{2k_1} при граничных условиях (6.2') позитивен в смысле (7.8), параметры задачи A_{ϵ} —достаточно гладкие, $h \in W_2^{(\sigma)}$, $\sigma = m + p + l_1$, $p \geqslant 2l_1$.

Tогда имеет место следующая асимптотика для решения u_{ϵ} задачи A_{ϵ} :

$$u_{\varepsilon} = \sum_{s=0}^{m} \varepsilon^{s} w_{s} + \sum_{s=0}^{m+h_{1}} \varepsilon^{s+1} a_{s} + \sum_{r=0}^{m+h_{1}} \varepsilon^{r} v_{r} + z_{m}, \tag{7.11}$$

причем эту формулу можно p раз дифференцировать. **Для невязки** \mathbf{z}_m имеют место следующие оценки:

$$\sum_{\substack{i=1\\ i \neq 1}}^{2k_1} \|D^{(i)}z_m\| + \|z_m\| = O(\varepsilon^{m+1}), \|D^{(2k_1+j)}z_m\| = O(\varepsilon^{m+1-j}) \ (1 \leqslant j \leqslant p), \quad (7.12)$$

точнее во внутренней подобласти $Q',\ \overline{Q'} \subset Q,$

$$||D^{(2h_1+i)}z_m||_{Q'} = O(\varepsilon^{m+1}), |i| \leqslant p,$$
 (7.13)

a в граничной полоске $U\left(\Gamma\right)$:

$$||D^{(2h_1+j)}z_m||_{U(1)} = O(\varepsilon^{m+1-j}) \qquad (1 \leqslant |j| \leqslant p).$$
 (7.14)

Примером такого вырождения, когда выполняются условия теоремы 11, может служить вырождение уравнения пластины вида $\varepsilon^2 \Delta^2 u - \Delta u = h$ при

¹⁾ Действительно, согласно уравнениям (6.19), из которых последовательно определяются функции w_i , при указанной гладкости h функция w_0 принадлежит $W_2^{(c)}$, где $\sigma = m + p + l_1 + 2k_1$, функция v_0 , определяемая из (6.16) при условиях (6.17), принадлежит $W_2^{(c_1)}$, где $\sigma_1 = m + p \times k_1$, а функция σ_0 также принадлежит $W_2^{(c_1)}$. Из (6.19), (6.20) видно, что каждая следующая итерация понижает гладкость соответствующих функций на единицу. Поэтому суммы в (7.11) (см. ниже) допускают производные до p-го порядка.

граничных условиях закрепления: $u\Big|_{\Gamma} = \frac{\partial u}{\partial n}\Big|_{\Gamma} = 0$, в уравнение мембраны $-\Delta w = h$ при условии $w|_{\Gamma} = 0$.

2. Доказательство леммы 9. Сначала установим неравенство (7.10) для гладких функций *и*, обращающихся в нуль в граничной полоске. Как и в § 3, основное место занимает вывод оценки

$$|(\Lambda_{\varepsilon}u, u) \geqslant \beta^{2} \sum_{|j|=1}^{l_{1}} \sum_{|h_{1}|=k_{1}} \varepsilon^{2j} ||D^{(h_{1}+j)}u||^{2} - M \varepsilon \left(\sum_{|h_{1}|=k_{1}} ||D^{(h_{1})}u||^{2} + ||u||^{2}\right)$$
(7.15)

(cp. c (3.12)), где
$$\Lambda_{\varepsilon} = \sum_{i=1}^{l_1} \varepsilon^{2i} L_{2(k_1+i)}$$
, $(j) = (j_1, \ldots, j_n)$, $|j| = j_1 + \ldots + j_n$.

В случае постоянных коэффициентов и когда $L_{2(k_1+i)}$ состоят лишь из членов порядка $2(k_1+i)$ (7.15) устанавливается, как и при доказательстве леммы 2, с помощью применения преобразования Фурье:

$$\widetilde{u}(\xi) = \frac{1}{(\sqrt{2\pi})^n} \int_{-\infty}^{+\infty} u(x) e^{-i \sum_{j=1}^n x_j \xi_j} dx.$$
 (7.16)

В случае переменных коэффициентов применяется та же методика, которой мы пользовались в § 3 (для случая эллиптических операторов, не содержащих параметры, она применялась в [29], [23], [26] и в других работах). Сначала для функций w, отличных от нуля лишь в достаточно малой подобласти $Q_1 \subset Q$, устанавливаем (7.15), применяя выкладки, аналогичные (3.13), (3.14), ..., (3.18'); δ — диаметр области Q_1 . Далее, пользуясь разложением единицы $1 \equiv \sum_{i=1}^{N} \zeta_i(x)$, $x \in Q$, причем диаметр δ_i носителя $\zeta_i(x)$ не превосходит δ , и, применяя выкладки, аналогичные (3.19) — (3.20'), получим (7.15). Отсюда, как и в § 3, выводим (7.10). Далее, точно так же, как в замечании на стр. 44, убеждаемся в справедливости (7.10) для любых достаточно гладких функций u, удовлетворяющих условиям (6.2'), (6.4'), откуда и вытекает равномерная позитивность, а значит, и равномерная разрешимость задач A_s .

Замечание. В силу теорем, доказанных О. В. Гусевой [44] (см. также работы Ниренберг [45], [48]), если $h \in W_2^{(\tau)}$, то решение 1-й краевой задачи (7.1), (6.2'), (6.4') принадлежит $W_2^{(2(h_1+l_1)+\tau)}$.

Доказательство теоремы 11. Оно проводится аналогично доказательству теоремы 6 (§ 4 и § 5). Мы его проведем, не останавливаясь на всех подробностях.

Так как невязка z_m удовлетворяет уравнению (6.22'), то согласно энергетическому неравенству (7.10) выводим, полагая всюду ниже $z_m = z$,

$$||z||_{\varepsilon}^{2} \equiv \sum_{|j|=0}^{l_{1}} \sum_{|k_{1}|=k_{1}} \varepsilon^{2|j|} ||D^{(j+k_{1})}z||^{2} + \sum_{|i|=1}^{k_{1}-1} ||D^{(i)}z||^{2} + ||z||^{2} \leqslant C \varepsilon^{2(m+1)} ||g_{m}||^{2},$$

$$||g_{m}|| = O(1).$$

$$(7.17)$$

Отсюда сразу вытекают оценки:

$$||z|| + \sum_{|j|=1}^{k_1} ||D^{(i)}z|| \le C_1 \varepsilon^{m+1}, ||D^{(k+j)}z|| \le C_1 \varepsilon^{m+1-|j|} \quad (|j| \le l_1).$$
 (7.18)

Далее легко оценить внутри области невязку z и ее производные. Пусть $\zeta(x)$ —гладкая функция, обращающаяся в пуль в граничной полоске Q_{η} и равна 1 вне $Q_{2\eta}$. Тогда

$$L_{\varepsilon}(\zeta z) = \zeta \varepsilon^{m+1} g_m + L'_{\varepsilon} z, \tag{7.19}$$

где L'_{ε} — оператор порядка $2(k_1+l_1)-1$, в коэффициенты которого входят производные от ζ и соответствующие степени ε . Применяя к обеим частям (7.19) оператор дифференцирования D по одной из переменных, мы получим:

$$L_{\varepsilon}(D(\zeta z)) = \varepsilon^{m+1}D(\zeta g_m) + L_{\varepsilon}''z, \tag{7.20}$$

где L_{ε}'' — оператор порядка $2(k_1+l_1)$. Умножая обе части (7.20) скалярно на $D(\zeta z)$, применяя к левой части энергетическое неравенство (7.10), а скалярные произведения, стоящие справа, оценивая (после соответствующего интегрирования по частям), как мы это уже неоднократно делали (см. § 5 п. 1, 2), получим:

$$||D(\zeta z)||_{\varepsilon}^{2} \leqslant C_{1}(\varepsilon^{2(m+1)} ||\zeta g_{m}||^{2} + ||z||_{\varepsilon}^{2}) + \frac{1}{2} ||D(\zeta z)||_{\varepsilon}^{2},$$
(7.21)

откуда, пользуясь (7.17), получим:

$$||D(\zeta z)||_{\varepsilon} = O(\varepsilon^{m+1}) \quad \text{if} \quad ||Dz||_{\varepsilon, Q-Q_{2\eta}} = O(\varepsilon^{m+1}), \tag{7.22}$$

так как $\zeta \equiv 1$ в $Q - Q_{2\eta}$. Аналогично, дифференцируя последовательно (7.19), мы получим:

$$\sum_{|j|=1}^{l_1} \sum_{|k_1|=k_1} \varepsilon^{2j} \|D^{(j+2k_1)}z\|_{Q'}^2 + \sum_{|i|=0}^{2k_1} \|D^{(i)}z\|_{Q'}^2 \leqslant C\varepsilon^{2(m+1)} \|g_m\|^2 = O\left(\varepsilon^{2(m+1)}\right) \quad (7.23)$$

и, далее дифференцируя (7.19), получим:

$$\|D^{(2h_1+i)}z\|_{Q'} \leqslant \varepsilon^{m+1} \sum_{|s|=0}^{|i|} \|D^{(s)}g_m\|_{Q'} = O(\varepsilon^{m+1}), \quad |i| \leqslant p, \tag{7.24}$$

где $\overline{Q'} \subset Q''$, $\overline{Q''} \subset Q$. При этом мы воспользовались тем, что во внутренней подобласти Q'' при достаточно малых ε погранслои v_i вместе с производными имеют любой порядок малости, и следовательно, $\parallel D^{(s)}g_m \parallel_{Q'} = O$ (1).

Замечание. Точно так же, как в замечании на стр. 95, с помощью процесса замыкания убеждаемся в том, что для справедливости оценок (7.23) и (7.24) достаточно, чтобы функция g_m допускала лишь те производные, которые выписаны справа в (7.24). (При выводе мы пользовались большим числом производных.)

Для полного доказательства теоремы 11 необходимо еще доказать оценки (7.14) в граничной полоске области Q. Это можно сделать аналогично тому, как в доказательстве теоремы 4.

Пусть (р, $\varphi_1, \ldots, \varphi_{n-1}$) — локальная система координат вблизи некоторой

точки
$$P_0\in\Gamma$$
, $\phi=\phi\left(rac{
ho}{\delta}
ight)\prod_{i=1}^{n-1}\phi\left(rac{|\varphi_i-\varphi_i^0|}{\delta}
ight)$, $P=P_0$ $(0,\,\varphi_i^0).$

Очевидно, для ψz имеет место формула (7.19) ($\psi \longleftrightarrow \zeta$), которую запишем сейчас в следующем виде:

$$\mathscr{L}_{\varepsilon}\left(\psi z\right) \equiv \sum_{j=0}^{2l_{1}} \varepsilon^{j} \mathscr{L}_{2h_{1}+j}\left(\psi z\right) + M\psi z = \psi \varepsilon^{m+1} g_{m} + L'_{\varepsilon} z + \left(\mathscr{L}_{\varepsilon} - L_{\varepsilon}\right)\left(\psi z\right) + M\psi z = H,$$

$$(7.25)$$

где оператор \mathcal{L}_{2k_1+j} совпадает с'главной частью 1) оператора L_{2k_1+j} , записанной в координатах (ρ, φ_i) , в которой коэффициенты заменены постоянными, равными значениями этих коэффициентов в точке $(0, (\varphi_i^0) M = \text{const}, M>0$. Обозначим $\psi z=z_1$, продолжим эту функцию нулем при $\rho>\delta$, $\{\varphi_i-\varphi_i^0\}>\delta$, и пусть

$$Z_1\left(
ho,\,\xi
ight) = rac{1}{\left(\sqrt[4]{2\pi}
ight)^{n-1}} \int\limits_{-\infty}^{+\infty} z_1\left(
ho,\,arphi
ight) e^{-i\left(arphi_1^{\pm}_1+\,\ldots\,+\,arphi_{n-1}^{\pm}_{n-1}
ight)} \, darphi_1\,\,\ldots\,\,darphi_{n-1}$$

есть преобразование Фурье z_1 по переменным $(\varphi_1, \ldots, \varphi_{n-1})$. Применяя к обеим частям (7.25) преобразование Фурье по φ , мы получим обыкновенное уравнение

$$\widetilde{\mathscr{L}_{\varepsilon}(z_1)} \equiv \sum_{j=0}^{2l_1} \varepsilon^j \pi_{2k_1+j}^0 \left(-i \frac{d}{d\varrho}, \ \xi_1, \ \dots, \ \xi_{n-1} \right) Z_1 + M Z_1 = \widetilde{H}, \quad (7.26)$$

где $\pi^0_{2k_1+j}(\xi)$ — характеристическая форма оператора \mathcal{L}_{2k_1+j} , причем вместо переменной ξ_n (отвечающей дифференцированию по ρ) подставлен оператор $-i\frac{d}{d\rho}$. Уравнение (7.26) является обыкновенным дифференциальным уравнением по ρ порядка $2(k_1+l_1)$ с полиномиальными коэффициентами от $\xi_1,\ldots,\,\xi_{n-1}$, причем его решение Z_1 удовлетворяет граничным условиям

$$Z_{1}|_{\rho=0} = \dots = \frac{d^{h_{1}+l_{1}-1}Z_{1}}{d\rho^{h_{1}+l_{1}-1}}\Big|_{\rho=0} = 0, \quad Z_{1}|_{\rho\geqslant\delta} = \dots = \frac{d^{h_{1}+l_{1}-1}Z_{1}}{d\rho^{h_{1}+l_{1}-1}}\Big|_{\rho\geqslant\delta} = 0.$$
 (7.27)

Пользуясь тем, что характеристическая обобщенная форма $\pi_{\epsilon}(\xi, P_0)$ оператора \mathcal{L}_{ϵ} положительно определенная и M>0, легко убеждаемся в позитивности оператора \mathcal{L}_{ϵ} и в равномерной разрешимости задачи (7.26), (7.27). Представив ее решение Z_1 через \widetilde{H} с помощью функции Грина и оценивая асимптотически корни характеристического уравнения для (7.26), найдем:

$$\sum_{j=0}^{2l_{1}} \varepsilon^{2j} \left(\left\| \frac{\partial^{2k_{1}+j} Z_{1}}{\partial \rho^{2k_{1}+j}} \right\|^{2} + |\xi|^{2} \left\| \frac{\partial^{2k_{1}+j-1} Z_{1}}{\partial \rho^{2k_{1}+j-1}} \right\|^{2} + \dots + |\xi|^{2(2k_{1}+j)} \| Z_{1} \|^{2} \right) + \\ + \| Z_{1} \|^{2} \leqslant C \|_{*}^{2} \widetilde{H} \|^{2}, \qquad (7.27')$$

причем нормы в (7.27') берутся лишь по ρ ; $|\xi|^2 = \xi_1^2 + \ldots + \xi_{n-1}^2$, C -константа, не зависящая от ε , ξ , Z_1 , P_0 . Интегрируя обе части (7.27') по ξ_i

¹⁾ Т. е. с суммой членов старшего порядка.

⁷ Успехи матем. наук, т. XII, вып. 5

от $-\infty$ до $+\infty$ и пользуясь равенством Парсеваля, получим:

$$\begin{aligned} \|\|z_1\|\|_{\varepsilon}^2 & \equiv \sum_{|i|=0}^{2l_1} \sum_{|k_1|=k_1} \varepsilon^{2|i|} \|D^{(2k_1+i)}z_1\|^2 + \|z_1\|^2 \leqslant C \|H\|^2 \leqslant \\ & \leqslant C_1 \left[\varepsilon^{2(m+1)} \|\varphi g_m\|^2 + \|L'_{\varepsilon} z\|^2 + \|(\mathcal{L}_{\varepsilon} - L_{\varepsilon}) z_1\|^2\right]. \end{aligned}$$
(7.28)

Коэффициенты оператора $\mathcal{L}_{\varepsilon}-L_{\varepsilon}$, стоящие при производных, входящих в $\mathcal{L}_{\varepsilon}$, имеют вид $a\left(P_{0}\right)-a\left(P\right)$. Взяв δ достаточно малым, мы можем их сделать сколь угодно малыми, и, следовательно, мы сможем из (7.28) получить

$$|||z_1|||_{\varepsilon}^2 \leqslant C_2(\varepsilon^{2(m+1)} || \phi g_m ||^2 + || L_{\varepsilon}'z||^2 + || L_{\varepsilon}'z_1 ||^2),$$
 (7.29)

где L_{ε}'' — оператор, в который входят «неглавные» («подчиненные») члены оператора L_{ε}^{-1}). Далее, аналогично тому, как мы это делали в § 5, представляем функцию, равную 1 в Q в виде суммы $1 \equiv \sum_{i=0}^{N} \zeta_{i}(x)$, где $\zeta_{i}(x)$ (i>0) имеют носитель диаметра \leqslant , прилегающий к Γ , а $\zeta_{0}(x)$ имеет носитель внутри Q. Для каждой из функций $z_{i}=\zeta_{i}z$ имеет место (7.29), а для $\zeta_{0}z$, как мы уже доказали, имеет место (7.12), (7.13). Отсюда находим:

$$|||z|||_{\varepsilon}^{2} = |||\left(\sum_{i=0}^{N} \zeta_{i}(x)\right)z||_{\varepsilon}^{2} \leqslant C_{3}\left(\varepsilon^{2(m+1)} ||g_{m}||^{2} + \sum_{i>0} \left(||L'_{\epsilon}z||^{2} + ||L''_{\epsilon}z_{i}||^{2}\right)\right)$$
(7.30)

 $(\zeta_i$ входят также в коэффициенты L_{ε}'). Далее имеем:

$$\sum_{i>0} \left(\| L_{\varepsilon}'z \|^2 + \| L_{\varepsilon}''z_i \|^2 \right) \leqslant C_4 \varepsilon \| \| z \|_{\varepsilon}^2 + C_4 \sum_{|j|=0}^{2k_1-1} \| D^{(j)}z \|^2.$$
 (7.31)

Пэследнюю сумму оценим следующим образом

$$\sum_{|j|=0}^{2h_1-1} \|D^{(j)}z\|^2 \leqslant \sigma^2 \sum_{|(h_1)|=k_1} \|D^{(2h_1)}z\|^2 + M^2 \|z\|^2, \tag{7.31}$$

причем δ можно взять сколь угодно малым, если M^- достаточно большое (см. [26]). Из (7.30), (7.31) и (7.31') при достаточно малом ϵ и δ выводим:

$$\| \|z\| \|_{\mathfrak{s}}^{2} \leqslant C_{\mathfrak{s}} \left(\varepsilon^{2(m+1)} \| g_{m} \|^{2} + \| z \|^{2} \right). \tag{7.32}$$

Применяя к последнему слагаемому $||z||^2$ энергетическую оценку (7.10) (в которой h заменено на $\epsilon^{m+1}g_m$), мы получим (7.14) для $j \leqslant 2l_1$.

Чтобы вывести оценки для производных более высокого порядка, следует только, аналогично тому, как это делалось в § 5, продифференцировать последовательно, по φ и по р уравнение (7.19) и применять каждый раз уже выведенные оценки.

¹⁾ Нормы членов, старших у $(\mathcal{L}_{\varepsilon}-L_{\varepsilon})z_1$, мы оценили и перенесли соответствующие слагаемые в левую часть (7.29) и соответственно изменили константу C.

§ 8. Взаимные вырождения однохарактеристических и эллиптических уравнений

1. Уравнения нечетного порядка $2k_1 + 1$ вида

$$L_{2k_1+1}u \equiv M_1(M_{2k_1}u) + M'_{2k_1}u = h \tag{8.1}$$

мы будем называть однохарактеристическими 1), если M_1 — оператор 1-го порядка, M_{2k_1} — эллиптический оператор порядка $2k_1$, а M'_{2k_1} — любой дифференциальный оператор порядка $\leqslant 2k_1$. Очевидно, вещественными характеристиками уравнения (8.1) будут лишь характеристики оператора 1-го порядка M_1 . Ограничимся для простоты случаем, когда путем замены переменных оператор M_1 можно заменить оператором $\frac{\partial}{\partial x_1}$, т. с. когда характеристики можно превратить в семейство прямых, параллельных оси Ox_1 .

Относительно границы Γ области Q, в которой рассматривается уравнение, мы предположим, что всякая характеристика, т. е. прямая $x_i = C_i$ $(i=2,\ldots,n)$, имеющая общие точки с Q, пересекает Γ в двух точках $P(x_1,x_2,\ldots,x_n),\ P^*(x_1^*,x_2,\ldots,x_n),\ x_1=x_1(x_2,\ldots,x_n),\ x_1^*=x_1^*(x_2,\ldots,x_n),\ x_1^*>x_1$. Геометрическое место точек P обозначим через Γ^- , а P^* — через Γ^* (см. § 4). Пересечение $\overline{\Gamma}^- \bigcap \overline{\Gamma}^+$ есть (n-2)-мерное множество \mathfrak{D} ; \mathfrak{D} есть геометрическое место точек касания характеристик с Γ . В качестве местной системы координат возьмем $(\rho, \phi_1, \ldots, \phi_{n-1})$, где ρ , например, есть расстояние по внутренней нормали. Тогда в новых координатах, если

$$M_{2k_1}=b_{2k_1}(\rho,\varphi)\frac{\partial^{2k_1}}{\partial \rho^{2k_1}}+\ldots, \qquad \frac{\partial}{\partial x_1}=\cos\left(\rho,\,x_1
ight)\frac{\partial}{\partial \rho}+\ldots, \qquad \text{imeem} \qquad L_{2k_1+1}=0$$

$$=a_{2k_1+1}rac{\partial^{2k_1+1}}{\partial
ho^{2k_1+1}}+\dots$$
, где $a_{2k_1+1}=\cos\left(
ho,\,x_1
ight)b_{2k_1}$. Так как $b_{2k_1}
eq 0$ и

имеет постоянный знак, то $a_{2k_1+1} \neq 0$ всюду вне $\mathfrak D$ и имеет противоположные знаки на Γ^- и Γ^+ .

Первой краевой задачей для однохарактеристического уравнения (8.1) называется его решение при граничных условиях:

$$u|_{\Gamma} = \frac{\partial u}{\partial n}\Big|_{\Gamma} = \dots = \frac{\partial^{k_1 - 1} u}{\partial n^{k_1 - 1}}\Big|_{\Gamma} = 0, \quad \frac{\partial^{k_1 u}}{\partial n^{k_1}}\Big|_{\Gamma^*} = 0, \quad (8.2)$$

где Г* равняется Г+ или Г-. В одномерном случае первая краевая задача для однохарактеристического уравнения порядка $2k_1+1$ описана в § 3 (см. (3.29), (3.30)). Для уравнений 1-го порядка, которые являются однохарактеристическими, первая краевая задача есть задача Коши. Пусть оператор L_{2k_1+1} при условиях (8.2) позитивен 2): ($L_{2k_1+1}u$, u) $\geqslant \alpha^2(u,u)$. Форме, стоящей слева, после k_1 -кратного интегрирования по частям можно придать вид:

$$(L_{2h_1+1}u, u) = \left(\frac{\partial}{\partial x_1}(M_{2h_1}u), u\right) + \ldots = \int_{\mathcal{O}} \left[\frac{\partial}{\partial x_1}(B_{h_1}(u, u)) + \ldots\right] dx, (8.3)$$

¹⁾ Вообще однохарактеристическими в области Q мы называем операторы вида $L_{2k_1+1}\equiv M_{2k_1+1}+M_{2k_1}'$, у которых оператор старшего порядка M_{2k_1+1} имеет в каждой точко $x\in Q$ одну вещественную и $2k_1$ комплексных характеристик.

 $^{^2}$) Отметим, что иногда удается оператор L_{2k_1+1} привести к позитивному с помощью замены $u\!=\!u_1e^{\gamma x_1}$. Мы считаем, что если это возможно, подобные замены уже произведены, и преобразованный оператор обозначаем также через L_{2k_1+1} .

где B_{k_1} — некоторая квадратичная форма от k_1 -ых производных u, которая вблизи границы имеет вид $(-1)^{k_1} b_{2k_1} \left(\frac{\partial^{k_1} u}{\partial \rho^{k_1}}\right)^2 + \dots$, причем многоточием обозначены члены, содержащие хотя бы одну производную по φ_i . После интеграции по x_1 в случае $\Gamma^* = \Gamma^{\clubsuit}$ получим:

$$(L_{2k_1+1}u, u) = -\int_{\Gamma_{-}} \left[(-1)^{k_1} \cos(\rho, x_1) b_{2k_1} \left(\frac{\partial^{k_1}u}{\partial \rho^{k_1}} \right)^2 + \dots \right] d\Gamma_{-} + \dots$$
 (8.4)

В этом случае, так как $\cos{(\varrho, x_1)} > 0$, из требования позитивности оператора L_{2k_1+1} вытекает:

$$(-1)^{h_1+1} b_{2h_1}|_{\Gamma} > 0. (8.5)$$

Аналогично, если $\Gamma^* = \Gamma^*$ то

$$(-1)^{k_1+1} b_{2k_1}|_{\Gamma^+} < 0. (8.6)$$

Когда мы будем ниже говорить о первой краевой задаче для любого дифференциального уравнения порядка p, то всегда будем иметь в виду при p=2s четном первую краевую задачу для эллиптического уравнения 2s-го порядка и при p=2s+1 нечетном—определенную сейчас первую краевую задачу для уравнения печетного порядка.

Пусть задача A_0 совпадает с 1-й краевой задачей для уравнения

$$L_h \omega = h, \tag{8.7}$$

а задача $A_{\mathfrak{s}}$ — первая краевая задача для уравнения

$$L_{\varepsilon}u = L_{k}u + \sum_{r=1}^{l} \varepsilon^{r} L_{k+r}u \tag{8.8}$$

(см. § 6). Граничные условия задачи A_0 составляют часть условий задачи A_{ϵ} . Мы в дальнейшем будем считать (как мы это делали в § 3), что в случае нечетного k или k+l, соответствующие граничные условия вида (8.2) выбираются всегда так, чтобы выполнялись необходимые условия (8.5) или (8.6) позитивности соответствующего оператора L_k (или L_{k+l}). В случае четности одного из этих операторов предполагается позитивность его характеристической формы.

Случай вырождения оператора четного порядка в четный мы уже рассмотрели. Возможны еще три случая вырождения уравнений (которые ниже проиллюстрированы примерами): эллиптического в однохарактеристического в эллиптическое и однохарактеристического в однохарактеристического в однохарактеристическое.

Для этих трех случаев леммы 8, 9 предыдущего параграфа сохраняют свою силу. Именно:

 Π емма 10. Достаточным условием регулярности вырождения задачи $A_{\mathfrak s}$ в задачу $A_{\mathfrak o}$ является выполнение неравенства

Re
$$\pi_{\varepsilon}(\xi; x) = \operatorname{Re} \sum_{r=0}^{l} \varepsilon^{r} \pi_{h+r}(\xi; x) > 0 \ \partial_{\Lambda} \pi \ \xi \neq 0.$$
 (8.9)

Доказательство этой леммы проводится так же, как доказательство леммы 8 (§ 7) и сводится к рассмотрению случаев, аналогичных указанным в § 3.

 Π е м м а 11. Для равномерной позитивности оператора A_{ϵ} достаточно, чтобы оператор L_{k} при соответствующих граничных условиях был позитивен и чтобы

$$\widetilde{\pi}_{\varepsilon}(\xi; x) \equiv \sum_{j=1}^{l_1} \varepsilon^{2j} \pi_{2(h_1+j)}(\xi; x) \geqslant \alpha^2 \sum_{j=1}^{l_1} \varepsilon^{2j} |\xi|^{2(j+h_1)} npu \quad k = 2k_1,
\widetilde{\pi}_{\varepsilon}(\xi; x) = \sum_{j=1}^{l_1} \varepsilon^{2j-1} \pi_{2(h_1+j)}(\xi; x) \geqslant \alpha^2 \sum_{j=1}^{l_1} \varepsilon^{2j-1} |\xi|^{2(j+h_1)} npu \quad k = 2k_1 + 1.$$
(8.10)

Доказательство этой леммы проводится аналогично доказательству леммы 9 (§ 7) и при помощи соответствующих рассмотрений § 3.

В этих случаях опять-таки достаточные условия регулярности заключены в достаточных условиях позитивности.

К сожалению, общие предложения о разрешимости и дифференциальных свойствах решений для однохарактеристических уравнений порядка выше первого не исследованы (получены пока лишь частные результаты). Поэтому мы не можем, как мы это делали в предыдущем параграфе, вывести из лемм 10 и 11 теорему об асимптотическом разложении (7.11).

Однако, постулируя разрешимость и дифференциальные свойства решений задач A_{ϵ} и A_{0} (в нечетном случае), мы можем получить асимптотику, аналогичную той, которая получена в \S 6, и сформулировать теорему, аналогичную теоремам 10 и 11. При этом, как мы это подробно рассмотрели в \S 4 и 5 для случая вырождения уравнения второго порядка в уравнение первого порядка, следует отдельно изучать асимптотику вблизи множеств $\mathfrak D$ перехода и в остальной части области Q.

Ниже мы приводим случай вырождения эллиптического уравнения порядка $2\,l_1$ в уравнение первого порядка и частные примеры на разные случаи взаимных вырождений эллиптических и однохарактеристических уравнений (порядка > 1).

2. Вырождение эллиптического уравнения высшего порядка в уравнение 1-го порядка. Асимптотика решения задачи A_{ϵ} . Пусть дано уравнение, которое с помощью замены переменных можно привести к виду

$$L_{\varepsilon}u \equiv \sum_{s=2}^{2l_1} \varepsilon^{s-1} L_s u + \frac{\partial u}{\partial x_1} + f u = h, \qquad f \geqslant \gamma^2 > 0, \tag{8.11}$$

где L_{2l_1} —эллиптический оператор с позитивной характеристической формой. В области Q рассматривается задача A_{ε} , состоящая в решении уравнения (8.11) при граничных условиях

$$u\Big|_{\Gamma} = \dots = \frac{\partial^{l_1 - 1} u}{\partial n^{l_1 - 1}}\Big|_{\Gamma} = 0. \tag{8.11'}$$

Отметим, что аналогичная задача встречалась в приложениях [52]. Предположим, что

$$\int_{\mathcal{C}_{\epsilon}}^{\epsilon} \mathcal{G}_{\xi_{\epsilon}}^{(j)}(\gamma_{\ell}) = \widetilde{\pi}_{\epsilon}(\xi; x) \equiv \sum_{j=1}^{l_1} \varepsilon^{2j-1} \pi_{2j}(\xi; x) \geqslant \sum_{j=1}^{l_1} \varepsilon^{2j-1} |\xi|^{2j}, \tag{8.12}$$

т. е. вещественная часть обобщенной характеристической формы оператора $\widetilde{L}_{\mathbf{s}} = \sum_{s=2}^{2\mathbf{l_1}} \mathbf{s}^{s-\mathbf{l}} L_{\mathbf{s}} \;\; \text{положительна}. \;\; Для \;\; вырожденного \;\; уравнения$

$$L_1 \omega \equiv \frac{\partial \omega}{\partial x_1} + f(x) \omega = h, \qquad (8.13)$$

для того чтобы оператор L_1 был позитивен, граничные условия следует задавать на Γ^- :

$$w|_{\Gamma} = 0. \tag{8.14}$$

Леммы, аналогичные леммам 8 и 9 § 7, сейчас читаются следующим образом:

Пемма 10'. Выполнение условия (8.12) является достаточным условием для регулярности вырождения задачи A_{ϵ} в задачу A_{0} , в которой граничное условие задается на Γ^{-} (см. (8.14)).

Действительно, взяв локальную систему координат $(\varphi_1, \ldots, \varphi_{n-1}, \rho)$ в окрестности точки $x_0 = (\varphi_1^0, \ldots, \varphi_{n-1}^0, 0) \in \Gamma^-$, мы, как и при доказательстве леммы $8 \ (\S \ 7)$, из (8.12) выведем, что

$$\pi_{\varepsilon}(0, \ldots, 0, \xi_n; x_0) = \varepsilon^{-1} P_{2l_1}(i\varepsilon\xi_n),$$
 (8.15)

где через π_{ϵ} обозначена характеристическая форма оператора L_{ϵ} (записанного в координатах $(\varphi_1, \ldots, \varphi_{n-1}, \varphi)$):

$$\pi_{\varepsilon}(\xi_{1}, \ldots, \xi_{n}; x_{0}) = \sum_{s=2}^{2l} \varepsilon^{s-1} \pi_{s}(\xi_{1}, \ldots, \xi_{n}; x_{0}) + i(\xi_{1} \cos(\varphi_{1}, x_{1}) + \ldots + \xi_{n} \cos(\rho, x_{1})), \quad (8.16)$$

a

$$P_{2l_1}(\lambda) = \lambda Q_{\varphi_0}(\lambda) = \sum_{r=0}^{2l-1} a_{1+r}(\varphi^0) \lambda^{1+r}, \quad a_1(\varphi^0) = \cos(\rho, x_1)|_{\varphi_0}$$
 (8.17)

— характеристический многочлен введенного в § 6 дифференциального оператора M_0 (6.10) в точке x_0 . Согласно (8.12), где положено $\xi_1=\ldots=\xi_{n-1}=0$, вещественная часть многочлена P_{2l_1} (iε ξ_n) положительна:

 $\operatorname{Re} P_{2l_1}(i
ensuremath{\varepsilon} \xi_n) \gg \sum_{j=1}^{l_1} \varepsilon^{2^j} |\xi_n|^{2^j}$, и младший коэффициент $P_{2l_1}(\lambda)$: $a_1(\varphi^0) = \cos(\rho, x_1)|_{\varphi^0} > 0$. Отсюда согласно лемме $5 \S 3$ характеристическое уравнение $P_{2l_1}(\lambda) = 0$ имеет $l_1 - 1$ корней в левой полуплоскости, т. е. ровно столько, сколько граничных условий мы теряем на Γ^- при переходе от граничных условий (8.11) к (8.14). Аналогично убеждаемся, что на Γ^+ соответствующее характеристическое уравнение $P_{2l_1,\varphi^+}(\lambda) = 0$, $\varphi^+ \in \Gamma^+$, имеет l_1 корней, т. е. и на Γ^+ также имеет место регулярное вырождение.

Пемма 11'. Если выполнено условие (8.12) и $f(x) \geqslant \alpha^2 > 0$, то оператор L_{ϵ} равномерно позитивен и, следовательно, задача A_{ϵ} равномерно разрешима.

Доказательство этой леммы проводится точно так же, как доказательство леммы 9 (§ 7). Следует лишь заметить, что теперь вырожденный оператор L_1 позитивен:

$$(L_1 u, u) \gg \alpha^2 (u, u),$$
 (8.18)

так как $f \geqslant \alpha^2$ и $\left(\frac{\partial u}{\partial x}, u\right) = 0$, если u обращается в нуль на границе Γ (см. (8.11')).

Если h(x) — достаточно гладкая функция, а также соответственно гладки коэффициенты L_{ϵ} и граница Γ , то мы, как и в § 6, сумеем провести оба итерационных процесса. Напомним, что решение w задачи A_0 (8.13), (8.14), как уже отмечалось в § 4, обладает вне окрестности множества $\Gamma^- \bigcap \Gamma^+ = \mathfrak{D}$ такими же, грубо говоря, дифференциальными свойствами, как коэффициент f, правая часть h и граница Γ^- . Асимптотику для u_{ϵ} можно представить в виде

$$u_{s} = \sum_{i=0}^{m} s^{i} w_{i} + \sum_{j=0}^{m+1} s^{j} v_{j} + \sum_{j=0}^{m+1} s^{j} \alpha_{j} + z, \qquad (8.19)$$

причем α_i отличны от нуля лишь вблизи Γ^- ,

$$L_{\varepsilon}z = \varepsilon^{m+1}g_m, \tag{8.20}$$

 g_m ограничена (вместе c производными) в любой подобласти, не содержащей некоторой окрестности множества $\mathfrak D.$

Пусть функция $\zeta(x_2, \ldots, x_n)$ обращается в нуль вблизи $\mathfrak D$ и равна 1 вне большей окрестности $\mathfrak D$. Составляя уравнение, которому удовлетворяет функция ζz , и, умножая скалярно обе части этого уравнения на ζz , мы с помощью таких же рассуждений, какие проводились в § 5 (стр. 66), найдем:

$$\sum_{|j|=1}^{l} \varepsilon^{2j-1} \|D^{(j)}z\|_{\widetilde{C}}^{2} + \|z\|_{\widetilde{C}}^{2} \leqslant C \varepsilon^{2(m+1)}, \tag{8.21}$$

где $\widetilde{Q} = Q - U(\mathfrak{D})$.

Теорема 12. При достаточной гладкости параметров задачи A_{ϵ} (8.11), (8.11') и при выполнении условия (8.12) решение u_{ϵ} задачи A_{ϵ} представимо в виде (8.19), где w_0 — решение вырожденной задачи A_0 (8.13), (8.14), w_i — решения аналогичных уравнений 1-го порядка при граничных условиях (8.14), v_i — функции типа погранслоя, а невязка z удовлетворяет неравенствам (8.21).

Далее можно было бы вывести оценки для высших производных от z в \widetilde{Q} , аналогичные оценкам (4.42), но для краткости мы их здесь не приводим.

3. Примеры взаимных вырождений однохарактеристических и эллиптических уравнений. (a) Рассмотрим в прямо-угольнике Q (0 \leqslant x \leqslant a, 0 \leqslant y \leqslant π) уравнение

$$L_{\varepsilon}u \equiv \varepsilon \Delta \Delta u + \frac{\partial}{\partial x} \Delta u = h(x, y), \tag{8.22}$$

при граничных условиях первой краевой задачи:

$$u\Big|_{\Gamma} = \frac{\partial u}{\partial n}\Big|_{\Gamma} = 0 \tag{8.23}$$

(задача A_{ϵ}). При $\epsilon=0$ оно вырождается в однохарактеристическое уравнение

$$L_0 w \equiv \frac{\partial}{\partial x} (\Delta w) = h (x, y). \tag{8.24}$$

Задача A_0 , в которую, как мы покажем, регулярно вырождается задача A_{ϵ} , состоит в решении уравнения (8.24) при условиях

$$w \Big|_{\Gamma} = 0, \quad \frac{\partial w}{\partial x} \Big|_{x=a} = 0. \tag{8.25}$$

Решение w задачи $A_{\rm 0}$ легко получить с помощью метода Фурье: ищем w в виде

$$w = \sum_{n=1}^{\infty} c_n(x) \sin ny;$$

для $c_n\left(x\right)$ после подстановки этого ряда в (8.24) получим обыкновенное уравнение

$$c_n''' - n^2 c_n' = h_n(x), (8.26)$$

где $h(x, y) = \sum_{n=1}^{\infty} h_n(x) \sin ny$, которое решаем в соответствии с (8.25) при граничных условиях:

$$c_n(0) = c_n(a) = 0, \ c'_n(a) = 0.$$
 (8.27)

Легко видеть, что задача (8.26), (8.27) имеет, и притом единственное, решение, причем справедлива оценка:

$$\|c_n'''\|^2 + n^2 \|c_n''\|^2 + n^4 \|c_n'\|^2 + n^4 \|c_n\|^2 + n^4 \|c_n\|^2 + n^2 \|c_n'\|^2 + \|c_n'\|^2 \le K \|h_n\|^2, \quad (8.28)$$

причем все нормы берутся в \mathcal{L}_2 (0,a); K не зависит ни от n, ни от $h_n(x)$. Отсюда получаем, что функция w допускает все производные, входящие в (8.24), а также соответствующие производные низшего порядка, и все эти производные принадлежат \mathcal{L}_2 (0,a). Имеет место оценка:

$$\sum_{|i| \leq 2} \left\| \frac{\partial}{\partial x} D^{(i)} w \right\|_{Q}^{2} + \sum_{|i| \leq 2} \left\| D^{(i)} w \right\|_{Q}^{2} \leqslant C \left\| h \right\|_{Q}^{2}. \tag{8.29}$$

Если h имеет высшие производные из \mathcal{L}_2 и выполнены соответствующие дополнительные условия, то w допускает соответствующие производные высшего порядка и имеют место оценки, аналогичные (8.29).

Вместо того чтобы проверить на всех сторонах квадрата выполнение алгебраических условий регулярности вырождения задачи A_{ϵ} в задачу A_{0} , мы явно построим соответствующие погранслои (выпишем явно соответствующие операторы M_{0}) и докажем, что с их помощью можно устранить невязки в граничных условиях решений u_{ϵ} и w задач A_{ϵ} и A_{0} .

Для погашения невязки в граничных условиях для $u_{\mathfrak s}$ и $\mathfrak w$ вблизи частей границы $x=0,\ y=0,\ y=\pi$ построим погранслои. Для получения погранслоя вблизи части границы $\Gamma_1\left(y=0\right)$ (совпадающей с характеристикой) следует в области $D\left(x < a,\ y > 0\right)$ найти решение уравнения

$$M_0 v \equiv \varepsilon^2 \frac{\partial^4 v}{\partial y^4} + \varepsilon \frac{\partial}{\partial x} \left(\frac{\partial^2 v}{\partial y^2} \right) \equiv \frac{\partial^4 v}{\partial t^4} + \frac{\partial}{\partial x} \frac{\partial^2 v}{\partial t^2} = 0^{1}), \tag{8.30}$$

¹) Чтобы в этом убедиться, достаточно умножить (8.22) на ε и сделать замену $\frac{y}{\sqrt{\varepsilon}} = t$. M_0 будет главным членом оператора $\varepsilon L_\varepsilon$, записанного в координатах (t, x).

где $t=rac{y}{Varepsilon}$, при граничных условиях

$$v|_{x=a} = -w|_{x=a} = 0, \ v|_{y=0} = -w|_{y=0} = 0, \ \frac{\partial v}{\partial y}|_{y=0} = -\frac{\partial w}{\partial y}|_{y=0} = \varphi(x)$$
 (8.31)

(ср. с § 4, п. 5); очевидно, $\varphi(a) = 0$, $\varphi'(a) = 0$ 1); полагаем $\varphi(x) \equiv 0$ для x < 0. При этом v должно иметь вблизи y = 0 характер погранслоя. Задача (8.30), (8.31) может быть решена, например, следующим образом: полагаем $\frac{\partial v}{\partial y} = p$ и решаем в области (x < a, y > 0) для p задачу:

$$\varepsilon \frac{\partial^2 p}{\partial y^2} + \frac{\partial p}{\partial x} = 0, \quad p|_{x=a} = 0, \quad p|_{y=0} = \varphi(x), \tag{8.32}$$

решение которой дается в виде, аналогичном (4.50) (без множителя $\exp{(a-x_1)}$). Искомый погранслой $v_1=\psi\left(\frac{y}{\delta}\right)v$, где $v=\int\limits_0^y p\,dy$. Очевидно, v является решением задачи (8.30), (8.31). Погранслой v_2 вблизи линии $y=\pi$ строится совершенно аналогично. Далее строим погранслой вблизи границы $\Gamma_3(x=0)$ как решение обыкновенного уравнения по $x(x=\rho)$:

$$M_1 v \equiv \varepsilon^4 \frac{\partial^4 v}{\partial x^4} + \varepsilon^3 \frac{\partial^3 v}{\partial x^3} \equiv \frac{\partial^4 v}{\partial t^4} + \frac{\partial^3 v}{\partial t^3} = 0$$
 (8.33)

 $\left(M_1$ —главная часть оператора $arepsilon^3 L_arepsilon$ после замены $rac{x}{arepsilon} = t$) при граничных условиях

$$\begin{array}{l}
v|_{x=0} = -(w + v_1 + v_2)|_{x=0} = -(v_1 + v_2)|_{x=0} = \varphi_1(y), \\
\frac{\partial v}{\partial x}|_{x=0} = -\frac{a(w + v_1 + v_2)}{\partial x}|_{x=0} = \varphi_2(y); \\
\varphi_1(y) = O\left(\varepsilon^{\frac{1}{2}}\right), \ \varphi_2(y) = O(1).
\end{array}$$
(8.34)

Для наших целей достаточно решить уравнение $\frac{\partial^2 v}{\partial t^2} + \frac{\partial v}{\partial t} = 0$ при условиях (8.34).

Очевидно такое решение $v=\varphi_1\left(y\right)+\varepsilon\varphi_2\left(y\right)-\varepsilon\varphi_2\left(y\right)e^{-\frac{x}{\varepsilon}}=O\left(\varepsilon^{\frac{1}{2}}\right)+O\left(\varepsilon\right)e^{-\frac{x}{\varepsilon}}$ и имеет характер погранслоя, и обращается в нуль вместе с производными по x и по y при y=0 и $y=\tau$. Последнее вытекает из того, что функция $w+v_1+v_2$, стоящая справа в (8.34), вместе с производной по y обращается в нуль при $x=0,\ y=0$ и $x=0,\ y=\pi$; кроме того, $\frac{\partial\left(w+v_1+v_2\right)}{\partial x}=0$ в этих точках. Положим $v_3=\phi\left(\frac{x}{\delta}\right)v$. Невязка $z=u_\varepsilon-\left(w+v_1+v_2+v_3\right)$ удовлетворяет граничным условиям (8.23) на всей границе Γ , и если $h\in W_2$, то, исходя, например, из основного энергетического неравенства для функции $z_1=e^{hx}z,\ k>0$ и k-малое, получим, как в доказательстве теоремы 6,

$$\sum_{|i|=2} \varepsilon \|D^{(i)}z_1\|^2 + \sum_{|j|=1} \|D^{(j)}z_1\|^2 + \|z_1\|^2 \leqslant C\varepsilon.$$
(8.35)

¹⁾ Мы считаем, что выполнены достаточные условия, гарантирующие непрерывнию дифференцируемость в \overline{Q} функции $w\left(x,\,y\right)$.

Отсюда находим, что

$$||D^{(i)}z|| = O(1)$$
 $(|i| = 2);$ $||D^{(j)}z|| = O(\sqrt{\varepsilon})$ $(|j| \le 1),$ (8.36)

$$u_{\varepsilon} = w + (v_1 + v_2 + v_3) + O(\varepsilon^{\frac{1}{2}}),$$

$$D^{(j)}u_{\varepsilon} = D^{(j)}w + D^{(j)}(v_1 + v_2 + v_3) + O(\varepsilon^{\frac{1}{2}}) \text{ для } |j| = 1,$$

$$D^{(i)}u_{\varepsilon} = D^{(i)}w + D^{(i)}(v_1 + v_2 + v_3) + O(1) \text{ для } |i| = 2.$$

$$(8.37)$$

Более точную асимитотику, чем (8.37), можно получить, применяя вышеуказанные итерационные процессы и оценки, аналогичные (4.42). Мы на этом здесь останавливаться не будем.

(b)) Рассмотрим теперь пример вырождения однохарактеристического уравнения в эллиптическое.

Пусть в прямоугольнике Q дано уравнение

$$L_{\varepsilon}u \equiv \varepsilon \frac{\partial}{\partial x} \Delta u - \Delta u = h \tag{8.38}$$

при граничных условиях

$$u|_{\Gamma} = 0, \qquad \frac{\partial u}{\partial x}\Big|_{x=a} = 0$$
 (8.39)

(задача A_{ε}); $h \in W_2^{(1)}$. Эта задача при $\varepsilon \longrightarrow 0$ регулярно вырождается, как мы покажем, в задачу

$$L_0 w \equiv -\Delta w = h, \qquad w \mid_{\Gamma} = 0. \tag{8.40}$$

Выполнение необходимых алгебраических условий регулярности вырождения мы докажем явно, построив погранслои.

Погранслой v надо построить лишь вблизи части границы Γ_1 (x=a). Взяв $\rho=a-x, \ \phi=y, \$ получим для v в первом приближении

$$M_0 v \equiv -\varepsilon^3 \frac{\partial^3 v}{\partial \rho^3} - \varepsilon^2 \frac{\partial^2 v}{\partial \rho^2} \equiv -\frac{\partial^3 v}{\partial t^3} - \frac{\partial^2 v}{\partial t^2} = 0, \tag{8.41}$$

$$\frac{\partial v}{\partial \rho}\Big|_{\rho=0} = -\frac{\partial w}{\partial \rho}\Big|_{\rho=0} = f(y).$$
 (8.42)

Очевидно, решение v задачи (8.41), (8.42) типа погранслоя имеет вид

$$v = -\varepsilon f(y) e^{-\frac{\rho}{\varepsilon}} \equiv -\varepsilon f(y) e^{-\frac{a-x}{\varepsilon}}.$$
 (8.43)

Для того чтобы $v|_{x=a}=0$, достаточно подправить эту функцию следующим образом:

$$\widetilde{v} = -\varepsilon f(y) \left(e^{-\frac{x-a}{\varepsilon}} - 1\right). \tag{8.43'}$$

Наконец, полагаем $v_1 = \widetilde{v}\psi\left(\frac{a-x}{\delta}\right)$. Далее, как выше, оценивая разность $u_\varepsilon - \underline{w} - v_1 = z$, находим асимптотику для u_ε в первом приближении.

© Рассмотрим, наконец, пример однохарактеристического уравнения, вырождающегося в однохарактеристическое.

Пусть в квадрате $Q(0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant 1)$ дано уравнение

$$L_{\varepsilon}u \equiv \varepsilon^2 \frac{\partial}{\partial x}(\Delta u) - \varepsilon \Delta u + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + u = h \tag{8.44}$$

при граничных условиях

$$u|_{\Gamma} = 0, \ \frac{\partial u}{\partial x}\Big|_{x=1} = 0 \quad (0 \leqslant y \leqslant 1), \tag{8.45}$$

(задача А.). Для вырожденного уравнения

$$L_1 w = \frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + w = h \tag{8.46}$$

зададим граничные условия

$$w|_{x=0} = 0, \ w|_{y=0} = 0 \quad (0 \leqslant x \leqslant 1, \ 0 \leqslant y \leqslant 1)$$
 (8.47)

(задача A_0). Легко проверить, что необходимые алгебраические условия регулярного вырождения задачи A_{ϵ} в задачу A_0 , приведенные в п. а), выполнены. Ниже мы в этом убедимся, явно построив погранслои на сторонах Q: Γ_1 (x=1, $0 \le y \le 1$), Γ_2 ($0 \le x \le 1$, y=1), где происходит невязка в граничных условиях (8.45) и (8.46).

Для того чтобы решение w задачи A_0 не имело излома на биссектрисе BC, B (0, 0), C (1,1), мы ограничимся лишь тем случаем, когда h (x, y) обращается в нуль на BC (соответствующего порядка; в противном случае следовало бы построить также погранслой вблизи BC).

Вблизи Γ_1 возьмем $\rho = 1 - x$, $t = \frac{\rho}{\varepsilon}$

$$\begin{split} \varepsilon L_{\varepsilon}v &\equiv -\varepsilon^{3} \frac{\partial}{\partial \rho} \left(\frac{\partial^{2}v}{\partial \rho^{2}} + \frac{\partial^{2}v}{\partial y^{2}} \right) - \varepsilon^{2} \left(\frac{\partial^{2}v}{\partial \rho^{2}} + \frac{\partial^{2}v}{\partial y^{2}} \right) - \\ &- \varepsilon \frac{\partial v}{\partial \rho} + \varepsilon \frac{\partial v}{\partial y} + \varepsilon v - - \frac{\partial^{3}v}{\partial t^{3}} - \frac{\partial^{2}v}{\partial t^{2}} - \frac{\partial v}{\partial t} + \\ &+ \varepsilon \left(\frac{\partial v}{\partial y} + v \right) + \varepsilon^{2} \left(- \frac{\partial^{2}v}{\partial y^{2}} - \frac{\partial^{3}v}{\partial t \partial y^{2}} \right), \\ M_{0}v &\equiv -\frac{\partial^{3}v}{\partial t^{3}} - \frac{\partial^{2}v}{\partial t^{2}} - \frac{\partial v}{\partial t} = 0. \end{split}$$
(8.47')

Решением типа погранслоя последнего уравнения является

$$\begin{split} v_{0} = \varphi_{1}\left(y\right)e^{-\lambda_{1}t} + \varphi_{2}\left(y\right)e^{-\lambda_{2}t} &= \varphi_{1}\left(y\right)e^{-\frac{\lambda_{1}\left(1-x\right)}{\$}} + \varphi_{2}\left(y\right)e^{-\frac{\lambda_{2}\left(1-x\right)}{\$}}, \\ \lambda_{1,\;2} &= -\frac{1}{2} \pm \frac{i}{2}\sqrt{3}. \end{split}$$

Функции $\varphi_1(y)$ и $\varphi_2(y)$ определяем из системы:

$$v|_{x=1} = \varphi_{1}(y) + \varphi_{2}(y) = -w|_{x=1},$$

$$\frac{\partial v}{\partial x}|_{x=1} = \frac{\lambda_{1}}{\varepsilon} \varphi_{1}(y) + \frac{\lambda_{2}}{\varepsilon} \varphi_{2}(y) = -\frac{\partial w}{\partial x}|_{x=1}.$$
(8.48)

Далее погранслой v_0 можно уточнить, построив следующее приближение v_1 для погранслоя вблизи Γ_1 , как решение уравнения:

$$M_0 v_1 = -R_1 v_0 = -\left(\frac{\partial v_0}{\partial y} + v_0\right) \tag{8.49}$$

при нулевых начальных условиях

$$v_1|_{t=0} = \frac{\partial v_1}{\partial t}\Big|_{t=0} = 0.$$
 (8.50)

Очевидно, $v_1 = (t\alpha_1(y) + \beta_1(y)) \, e^{-\lambda_1 t} + (t\alpha_2(y) + \beta_2(y)) \, e^{-\lambda_2 t} = P_1 \left(y, \frac{x}{\varepsilon}\right) e^{-\lambda_1 \frac{1-x}{\varepsilon}} + P_2 \left(y, \frac{x}{\varepsilon}\right) e^{-\lambda_2 \frac{1-x}{\varepsilon}}$, где α_1 , α_2 , β_1 , β_2 выражаются через ϕ_1 , ϕ_2 , ϕ_1' , ϕ_2' . Функцию $\tilde{v}_1 = \phi \left(\frac{1-x}{\delta}\right) (v_0 + \varepsilon v_1)$ принимаем в качестве погранслоя вблизи Γ_1 .

Вблизи Γ_2 возьмем $\rho=1-y$, $t=\frac{1-y}{s}$,

$$\varepsilon L_{\varepsilon}v = -\frac{\partial^{2}v}{\partial t^{2}} - \frac{\partial v}{\partial t} + \varepsilon \left(\frac{\partial}{\partial x} \left(\frac{\partial^{2}v}{\partial t^{2}} \right) + \frac{\partial v}{\partial x} + v \right) - \varepsilon^{2} \frac{\partial^{2}v}{\partial x^{2}} + \varepsilon^{3} \frac{\partial^{3}v}{\partial x^{3}},$$

$$M_{0}v \equiv -\frac{\partial^{2}v}{\partial t^{2}} - \frac{\partial v}{\partial t} = 0. \tag{8.51}$$

Решением типа погранслоя этого уравнения является функция $\overline{v}_0 = \beta(x) \, e^{-t} = \beta(x) \, e^{-\frac{1-y}{\epsilon}}; \; \beta(x)$ определяем из условия

$$\overline{v}_0|_{t=0} = \overline{v}_0|_{y=1} = \beta(x) = -(w + \widetilde{v}_1)|_{y=1}.$$
 (8.52)

Далее находим следующее приближение \overline{v}_1 из уравнения

$$M_0\bar{v}_1 = -R_1\bar{v}_0 = -\left(\frac{\partial}{\partial x}\left(\frac{\partial^2\bar{v}_0}{\partial t^2}\right) + \frac{\partial\bar{v}_0}{\partial x} + \bar{v}_0\right) \tag{8.53}$$

при нулевом начальном условии $\overline{v_1}|_{t=0} = v_1|_{y=0} = 0$. В качестве погранслоя вблизи Γ_2 принимаем:

$$\widetilde{v}_2 = \psi\left(\frac{1-y}{\sigma}\right)(\widetilde{v}_0 + \varepsilon \widetilde{v}_1). \tag{8.54}$$

Положим:

$$u_{\varepsilon} = \omega + \widetilde{v}_1 + \widetilde{v}_2 + z,$$

где u_{ε} — решение задачи A_{ε} (его можно построить, например, методом интегральных уравнений, умножая обе части (8.44) на оператор ($\varepsilon^2 \frac{\partial}{\partial x} \Delta - \varepsilon \Delta$) , w— решение задачи A_0 , а \widetilde{v}_1 , \widetilde{v}_2 — построенные выше погранслои. Не вязка z удовлетворяет однородным граничным условиям (8.45) и

$$L_{\varepsilon}z = L_{\varepsilon}\left(u_{\varepsilon} - (w + \widetilde{v}_{1} + \widetilde{v}_{2})\right) = h - h - \varepsilon^{2} \frac{\partial}{\partial x}(\Delta w) + \varepsilon \Delta w - L_{\varepsilon}\widetilde{v}_{1} - L_{\varepsilon}\widetilde{v}_{2} = O(\varepsilon). \quad (8.55)$$

Отсюда выводим, что в метрике $\mathcal{L}_2(Q) = \|z\| = O(\varepsilon)$, $\|Dz\| = O(\varepsilon)$; эти оценки вытекают из энергетического неравенства $\|z\|^2 + \sum \varepsilon \|Dz\|^2 \leqslant C \cdot O(\varepsilon^2)$, а также соответствующие оценки для высших производных. Эти оценки показывают, что из невязки z уже удалена главная часть погранслоя (см. пример a)).

§ 9. Асимптотическое представление собственных значений и собственных функций вырождающихся операторов

- 1. Отметим некоторые элементарные свойства самосопряженных операторов в гильбертовом пространстве H. Пусть A такой оператор с чисто точечным спектром, Ω_A область определения оператора A и $\{u_i\}$, $\{\lambda_i\}$ соответственно полная ортонормированиая система собственных элементов и отвечающих им собственных значений: $Au_i = \lambda_i u_i$, $\|u_i\| = 1$.
- а) Лемма 12. Если u-nроизвольный элемент из Ω_A , $\lambda-n$ роизвольное вещественное число, то

$$\inf_{i} |\lambda - \lambda_{i}| \leqslant \frac{||Au - \lambda u||}{||u||}. \tag{9.1}$$

В самом деле, $u = \sum_i c_i u_i$ $(c_i = (u, u_i), \|u\|^2 = \sum_i c_i^2),$

$$Au - \lambda u = \sum_{i} c_{i} (\lambda_{i} - \lambda) u_{i}, \quad ||Au - \lambda u||^{2} = \sum_{i} c_{i}^{2} (\lambda_{i} - \lambda)^{2}.$$

Поэтому

$$\parallel Au - \lambda u \parallel^2 \gg \sum_i c_i^2 \left[\inf_i |\lambda - \lambda_i|\right]^2 = \parallel u \parallel^2 \left[\inf_i |\lambda - \lambda_i|\right]^2,$$

откуда и следует неравенство (9.1).

б) Пусть $||Au - \lambda u|| = \alpha$, ||u|| = 1, d – некоторое число, $d > \alpha$.

Разобьем собственные значения $\{\lambda_i\}$ и соответствующие собственные элементы $\{u_i\}$ на две группы:

- 1) Собственные значения $\{v_r\}$, лежащие на отрезке $[\lambda-d,\ \lambda+d]$, и соответствующие собственные функции $\{v_r\}$. Их замкнутую линейную оболочку обозначим через T_d^a .
- 2) Собственные значения $\{\nu_s\}$, лежащие вне $[\lambda-d,\ \lambda+d]$, и соответствующие собственные элементы $\{w_s\}$. Их замкнутую линейную оболочку обозначим через T_d^1 . Очевидно, $T_d^0 \oplus T_d^1 = H$.

 Π емма 13. Существует в T_d^0 элемент u_0 , для которого

$$||u - u_0|| \leqslant \frac{2\alpha}{d}, ||u_0|| = 1.$$
 (9.2)

В самом деле, если проекции u на T_d^0 и T_d^1 обозначить соответственно через u_d^0 и u_d^1 , то

$$||u_d^0||^2 + ||u_d^1||^2 = 1,$$

$$\alpha^{2} = ||Au - \lambda u||^{2} = ||Au_{d}^{0} - \lambda u_{d}^{0}||^{2} + ||Au_{d}^{1} - \lambda u_{d}^{1}||^{2}.$$

$$(9.3)$$

Если $\overline{c}_s=(u_d^1,\ w_s),$ то $u_d^1=\sum_s\overline{c}_sw_s,\ Au_d^1-\lambda u_d^1=\sum_s\overline{c}_s\left(\mu_z-\lambda\right)w_s;$ так как $|\mu_s-\lambda|>d,$ то

$$\|Au_d^1 - \lambda u_d^1\|^2 = \sum_s (\mu_s - \lambda)^2 \, \bar{c}_s^2 > d^2 \sum_s \bar{c}_s^2 = d^2 \, \|u_d^1\|^2.$$

Отсюда и из (9.3) имеем:

$$||u_{d}^{1}|| < \frac{1}{d} ||Au_{d}^{1} - \lambda u_{d}^{1}|| \le \frac{1}{d} ||Au - \lambda u|| = \frac{\alpha}{d},$$

$$||u - u_{d}^{0}|| = ||u_{d}^{1}|| < \frac{\alpha}{d},$$
(9.4)

$$||u_d^0|| \ge ||u|| - ||u_d^1|| > 1 - \frac{\alpha}{d} > 0.$$
 (9.5)

Обозначая $u_0 = \frac{1}{\|u_0^0\|} u_0^0$, имеем $\|u_0\| = 1$, при этом в силу (9.4) и (9.5)

$$\begin{split} \|\,u - u_0\,\| \leqslant &\,\|\,u - u_d^{\scriptscriptstyle 0}\,\| + \|\,u_0 - u_d^{\scriptscriptstyle 0}\,\| \, < \frac{\alpha}{d} + (1 - \|\,u_d^{\scriptscriptstyle 0}\,\|)\,\|\,u_0\,\| = \\ &= \frac{\alpha}{d} + (1 - \|\,u_d^{\scriptscriptstyle 0}\,\|) \leqslant \frac{\alpha}{d} + \left\lceil\,1 - \left(\,1 - \frac{\alpha}{d}\,\right)\,\right\rceil = \frac{2\alpha}{d}\,\,. \end{split}$$

Так как $u_0 \in T_d^0$, $||u_0|| = 1$, то мы доказали лемму.

в) Заметим в заключение, что если λ есть простое собственное значение оператора A и u_0 —соответствующий нормированный собственный элемент, то в H_1 —ортогональном дополнении к u_0 в H—оператор $A - \lambda I$ имеет ограниченный обратный $(A - \lambda I)_{H_1}^{-1}$ (псевдорезольвенту). При любом $v \in H$ уравнение

$$Ax - \lambda x + \mu u_0 = v \tag{9.6}$$

относительно $x \in H_1$ и числа μ разрешимо, именно

$$\mu = (v, u_0), x = (A - \lambda I)_{H_1}^{-1} (v - \mu u_0)$$
 (9.6')

 $(v - \mu u_0$ есть элемент H_1).

2. Перейдем теперь к интерссующей нас задаче. Обозначая через L_{2k_1} эллиптический самосопряженный оператор порядка $2k_1$, действующий на функции u, определенные в ограниченной n-мерной области Q, для которых этот оператор имеет смысл и для которых выполнены граничные условия (6.2') первой краевой задачи.

Аналогично через L_{ε} обозначим самосопряженный эллиптический сператор $L_{2k_1} + \varepsilon^2 L_{1\varepsilon}$, $L_{1\varepsilon} = \sum_{j=1}^{l_1} \varepsilon^{2(j-1)} L_{2(k_1+j)}$ — оператор, действующий на функтии u, определенные в области Q, для которых он имеет смысл и для которых выполнены граничные условия (6.2'), (6.4') первой краевой задачи.

Пусть $\lambda_{10} \leqslant \lambda_{20} \leqslant \ldots \leqslant \lambda_{i0} \leqslant \ldots$ и соответственно $\lambda_{1\varepsilon} \leqslant \lambda_{2\varepsilon} \leqslant \ldots \leqslant \lambda_{i\varepsilon} \leqslant \ldots -$ упорядоченные в порядке возрастания собственные значения операторов L_{2k_1} и L_{ε} и $\{u_{i0}\}$ и $\{u_{i\varepsilon}\}$ — полные ортонормированные системы собственных элементов этих операторов:

$$L_{2k_1}u_{i0} = \lambda_{i0}u_{i0}, \qquad L_{\varepsilon}u_{i\varepsilon} = \lambda_{i\varepsilon}u_{i\varepsilon}. \tag{9.7}$$

Предполагая границу Γ области Q и коэффициенты операторов L_{2k_1} , L_z достаточно гладкими, получим, что сообственные функции u_{i0} , $u_{i\epsilon}$ имеют соответствующий порядок гладкости. Это было доказано О. А. Ладыженской [33] для эллиптических операторов 2-го порядка; для интересующего нас случая эллиптических операторов порядка $2k_1$ (k_1 —любое) это следует из дифференциальных свойств решений первой краевой задачи, установленных О. В. Гусевой [44] (см. также Ниренберг [45], [48]). Если же полагать границу Γ и коэффициенты бесконечно дифференцируемыми, то такими же будут u_{i0} и u_{iz} .

Мы будем полагать, что $L_{1\varepsilon}=\sum_{s=1}^{l_1}\varepsilon^{2(s-1)}L_{2(h+s)}$ удовлетворяет условиям \S 7 и является позитивным:

$$(L_{1s}u, u) \geqslant 0 \tag{9.8}$$

для любых u из области определения $L_{1\varepsilon}$ (а значит L_{ε}), т. е. $u \in W_2^{2(h_1+l_1)}$, удовлетворяющих условиям (6.2'), (6.4').

Так как область определения $\Omega_{L_{\epsilon}}$ оператора L_{ϵ} есть часть области определения $\Omega_{L_{2k_1}}$ оператора L_{2k_1} и для каждого u из $\Omega_{L_{\epsilon}}$ в силу (9.8)

$$(L_{\varepsilon}u, u) \geqslant (L_{2k_1}u, u), \tag{9.9}$$

то из минимаксной теории собственных значений Куранта следует:

$$\lambda_{i\varepsilon} \geqslant \lambda_{i0} \qquad (i = 1, 2, \ldots). \tag{9.10}$$

Как доказано в § 7, вырождение оператора L_{ε} в оператор L_{2k_1} — регулярное.

Существует в силу построения § 6 функция v_{ε} типа погранслоя порядка k_1 , такая, что $v_{\varepsilon} = \varepsilon^{h_1} \bar{v}_{\varepsilon}$,

$$L_{\varepsilon}\left(\varepsilon^{\mathbf{k}_{1}}\overline{v_{\varepsilon}}\right) = O\left(\varepsilon\right), \qquad \|\overline{v}_{\varepsilon}\| = O\left(1\right)$$

$$(9.11)$$

и что $u_{i0} + \varepsilon^{k_1} \overline{v}_{\varepsilon}$ удовлетворяет условиям (6.4'), $\overline{v}_{\varepsilon} = \psi\left(\frac{\rho}{\delta}\right) [\overline{v}_0 + \varepsilon \overline{v}_1 + \dots + \varepsilon^{k_1} \overline{v}_{k_1}]$. С другой стороны, можно так же, как в § 6, найти функцию $\varepsilon \alpha_{\varepsilon}$ такую, что

$$w = u_{i0} + \varepsilon^{k_1} \overline{v_{\varepsilon}} + \varepsilon \alpha_{\varepsilon}$$

удовлетворяет всем краевым условиям (6.2'), (6.4') и

$$(L_{2h_1} - \lambda_{i0}) \left(\epsilon \alpha_{\epsilon} \right) = O(\epsilon). \tag{9.12}$$

Так как $\|w\| \gg \|u_{i0}\| - \varepsilon^{k_1} \|\overline{v}_{\varepsilon}\| - \varepsilon \|a_{\varepsilon}\| = 1 - O(\varepsilon)$, то

$$\|w\| \geqslant 1 - d_i \varepsilon, \quad d_i - \text{константа.}$$
 (9.13)

Далее,

$$(L_{\varepsilon}w - \lambda_{i0}w) = (L_{2k_{1}} + \varepsilon^{2}L_{1\varepsilon} - \lambda_{i0}I)(u_{i0} + \varepsilon^{k_{1}}\overline{v}_{\varepsilon} + \varepsilon\alpha_{\varepsilon}) =$$

$$= (L_{2k_{1}} - \lambda_{i0}I)u_{i0} + \varepsilon^{2}L_{1\varepsilon}u_{i0} + \varepsilon^{k_{1}}(L_{\varepsilon} - \lambda_{i0}I)\overline{v}_{\varepsilon} + \varepsilon(L_{\varepsilon} - \lambda_{i0}I)\alpha_{\varepsilon} =$$

$$= \varepsilon^{2}L_{1\varepsilon}u_{i0} + L_{\varepsilon}(\varepsilon^{k_{1}}\overline{v}_{\varepsilon}) - \varepsilon^{k_{1}}\lambda_{i0}\overline{v}_{\varepsilon} + \varepsilon(L_{\varepsilon} - \lambda_{i0}I)\alpha_{\varepsilon}.$$
(9.14)

В силу наших замечаний о гладкости собственных функций $u_{\rm sc}$

$$||L_{1\varepsilon}u_{i_0}||=O(1).$$

Отсюда и из (9.11), (9.14) следует:

$$\|L_{\varepsilon}w - \lambda_{i0}w\| = O(\varepsilon),$$

и, далее, из (9.13) имеем:

$$\frac{\parallel L_{\varepsilon} w - \lambda_{i0} w \parallel}{\parallel w \parallel} \leqslant b_{i} \varepsilon, \quad b_{i} - \text{ константа.}$$

В силу леммы 12 в интервале $[\lambda_{i0}-b_i\varepsilon,\ \lambda_{i0}+b_i\varepsilon]$ существует собственное значение $\overline{\lambda}_{i\varepsilon}$ оператора $L_\varepsilon.$

Положим теперь, что собственные значения λ_{i0} ($i=1,\ 2,\ldots,k$)—простые: $\lambda_{10} < \lambda_{12} < \ldots < \lambda_{i0} < \ldots < \lambda_{k0} < \lambda_{k+1,0}$. Из неравенства (9.10) следует: $\lambda_{k+1,\,0} > \lambda_{k+1,\,0}$.

Существует не более k собственных значений $\lambda_{i\epsilon}$, меньших $\lambda_{h+1,0}$. При достаточно малом ϵ интервалы $[\lambda_{i0}-b_i\epsilon,\lambda_{i0}+b_i\epsilon]$ $(i=1,\ 2,\ \ldots,\ k)$ не пересекаются и $\lambda_{k0}+b_k\epsilon<\lambda_{h+1,0}$. В каждом таком интервале находится

собственное значение $\bar{\lambda}_{i\epsilon}$ ($i=1,\ 2,\ \ldots,\ k$), все они попарно не равны и все они меньше $\lambda_{k+1,\ 0}$. Они, следовательно, совпадают с первыми k собственными значениями $\lambda_{1\epsilon},\ \lambda_{2\epsilon},\ \ldots,\ \lambda_{i\epsilon},\ \ldots,\ \lambda_{k\epsilon}$, которые меньше $\lambda_{k+1,\ 0}\leqslant \lambda_{k+1,\ \epsilon}$, т. е. $\bar{\lambda}_{i\epsilon}=\lambda_{i\epsilon}$ при $i=1,\ 2,\ \ldots,\ k$, и так как $|\lambda_{i0}-\lambda_{i\epsilon}|\leqslant b_{i}\epsilon$, то приходим к следующей лемме:

 Π емма 14. Для каждого i $(i=1,\ 2,\ \ldots)$ существует константа $b_i>0$ такая, что

$$|\lambda_{i\epsilon} - \lambda_{i0}| \leqslant b_{i\epsilon}. \tag{9.15}$$

Эта лемма доказывается и для случая кратных собственных значений λ_{i0} . В этом случае доказательство дословно повторяет доказательство леммы в работе [37].

Наша задача— найти асимптотическое газложение собственного значения:

$$\lambda_{is} = \mu_0 + \mu_1 \varepsilon + \mu_2 \varepsilon^2 + \dots + \mu_m \varepsilon^m + \varepsilon^{m+1} \delta_{m+1},$$

$$\mu_0 = \lambda_{i0},$$

$$(9.16)$$

и собственной функции $\overline{u}_{i\varepsilon}$ оператора L_{ε} :

$$\overline{u_{i\varepsilon}} = w_0 + \varepsilon w_1 + \varepsilon^2 w_2 + \dots + \varepsilon^m w_m + \varepsilon^{k_1} (\overline{v_0} + \varepsilon \overline{v_1} + \dots + \varepsilon^{m+k_1} \overline{v_{m+k_1}}) + \varepsilon (\alpha_0 + \varepsilon \alpha_1 + \dots + \varepsilon^{m+k_1} \alpha_{m+k_1}) + \varepsilon^{m+1} z_m, \quad (9.17)$$

где $w_0=u_{i0}$, w_i и α_i — функции с ограниченными производными любого порядка, \bar{v}_i — функция типа погранслоя $\|z_m\|=O$ (1). Это разложение аналогично разложению (6.13) и строится аналогичным методом: из того, что

$$L_{\epsilon} = L_{2h_1} + \sum_{j=1}^{l_1} \epsilon^{2j} L_{2(h_1+j)}$$
, и из (9.16), (9.17) имеем:

$$0 = (L_{\varepsilon} \overline{u}_{i\varepsilon} - \lambda_{i\varepsilon} \overline{u}_{i\varepsilon}) =$$

$$= \left\{ \left[\left(L_{2k_{1}} + \sum_{j=1}^{l_{1}} \varepsilon^{2j} L_{2(k_{1}+j)} \right) - \left(\mu_{0} + \sum_{j=1}^{m} \varepsilon^{j} \mu_{j} + \varepsilon^{m+1} \dot{\beta}_{m+1} \right) I \right] \left[w_{0} + \sum_{j=1}^{m} \varepsilon^{j} w_{j} + \varepsilon^{m+1} \dot{\beta}_{m+1} \right] + \varepsilon \left(\alpha_{0} + \sum_{j=1}^{m+k_{1}} \varepsilon^{j} \alpha_{j} \right) \right] + \varepsilon^{-k_{1}} \left\{ \left[M_{0} + \sum_{j=1}^{m+k_{1}+1} \varepsilon^{j} R_{j} - \varepsilon^{k_{1}} \left(\mu_{0} + \sum_{j=1}^{m} \varepsilon^{j} \mu_{j} + \varepsilon^{m+1} \dot{\beta}_{m+1} \right) I \right] \left(\bar{v}_{0} + \sum_{j=1}^{m+k_{1}} \varepsilon^{j} \bar{v}_{j} \right) \right\} + \varepsilon^{m+1} \left(L_{0} + L_{0} \right) = 0.$$

 $+ \, \varepsilon^{m+1} \left(L_{\varepsilon} - \lambda_{i\varepsilon} I \right) z_{m}. \quad (9.18)$

Соединяя в первых фигурных скобках члены, свободные от ε , получаем: $L_{2k_1}w_0-\mu_0w_0=0,\quad \mu_0=\lambda_{i0};$

решение этого уравнения при условиях (6.2') и $\|w_0\| = 1$ дает $w_0 = u_{i0}$. Соединяя во вторых фигурных скобках члены при ε^{-k_1} , получаем:

$$\overline{M_0v_0} = 0.$$

Решсние этого уравнения при условиях (6.17) и требовании, что \overline{v}_0 — функция типа погранслоя, определяет \overline{v}_0 в виде (6.17') (\overline{v}_0 еще помножается на погашающую функцию $\psi\left(\frac{\rho}{\delta}\right)$, как на стр. 87).

εα₀ подбирается, как в § 6, так, что

$$w_0 + v_0 + \varepsilon a_0$$

удовлетворяет всем условиям (6.2'), (6.4').

Пусть определены $w_i, v_i, \alpha_i, \mu_i$ при i < r. Соединяя члены при $\varepsilon^r (r \leqslant m)$ в первых фигурных скобках и приравнивая их нулю, получаем уравнение

$$(L_{2k_{1}} - \lambda_{i0} I) w_{r} - \mu_{r} w_{0} = -\sum_{j=1}^{\left[\frac{r}{2}\right]} L_{2(k_{1}+j)} w_{r-2j} + \sum_{j=1}^{r-1} \mu_{j} w_{r-j} - \frac{\left[\frac{r-1}{2}\right]}{-L_{2k_{1}} \alpha_{r-1} - \sum_{j=1}^{r-1} L_{2(k_{1}+j)} \alpha_{r-2j-1} + \sum_{j=0}^{r-1} \mu_{j} \alpha_{r-j-1} \equiv g_{r}, \quad (9.19)$$

где $[s] = \min(\{s\}, l_1)$, $\{s\}$ — целая часть s. Требуем для w_r выполнения условий (6.2'). Таким образом, задача нахождения w_r и μ_r свелась к задаче (9.6). Решаем эту задачу (см. стр. 110):

$$\mu_r = (g_r, u_{i0}),$$

$$w_r = (L_{2k_1} - \mu_0 I)_{Hi_1}^{-1} g_r,$$

 H_{i1} — ортогональное дополнение к функции u_{i0} в $H=\mathcal{L}_2(Q)$. Объединяя все члены при ε^{r-k_1} во вторых фигурных скобках $(r\leqslant m+k_1)$ и приравнивая их нулю, получаем:

$$M_{0}\overline{v_{r}} = -\sum_{i=1}^{r} R_{i}\overline{v_{r-i}} + \sum_{j=0}^{r-h_{1}} \mu_{j}\overline{v_{r-h_{1}-j}}$$
(9.19')

(вторая сумма появляется лишь при $r \geqslant k_1$). Требуем, чтобы v_r была функцией типа погранслоя, для $v_r + w_r$ ($v_r = \varepsilon^{k_1} v_r$) выполнялись условия (6.4') (при r > m, — чтобы выполнялись эти условия для v_r), и так же, как в §§ 2 и 6, находим v_r с помощью метода подбора. v_r еще помножается на сглаживающий множитель $\phi\left(\frac{\rho}{\lambda}\right)$.

Наконец, a_r строится так же, как в § 6, с тем, чтобы $w_+ + \varepsilon^{h_1} \bar{v}_- + \varepsilon a_-$

удовлетворяли условиям (6.2') и (6.4'). Построенная функция

$$w_{\epsilon} = \sum_{r=0}^{m} \epsilon^{r} w_{m} + \epsilon^{k_{1}} \sum_{r=0}^{m+k_{1}} \epsilon^{r} \overline{v_{r}} + \epsilon \sum_{r=0}^{m+k_{1}} \epsilon^{r} \alpha_{r}$$

удовлетворяет краевым условиям (6.2'), (6.4'). Далее, так как $\|w_0\| = \|u_{i0}\| = 1$, то

$$\|w_{\varepsilon}\| = 1 + O(\varepsilon). \tag{9.20}$$

В силу наших построений в выражении (9.18) члены при ε^s ($s=0,\ 1,\ \dots$

..., m) равны нулю; поэтому, если обозначить $\mu_{m\varepsilon} = \sum_{s=0}^{m} \varepsilon^{s} \mu_{s}$, то

$$L_{\varepsilon} w_{\varepsilon} - \mu_{m\varepsilon} w_{\varepsilon} = \varepsilon^{m+1} \overline{g}_{m}, \quad ||\overline{g}_{m}|| = O(1). \tag{9.21}$$

⁸ Успехи матем. наук, т. XII, вып. 5

Но тогда, в силу леммы 12 и (9.20),

$$\lambda_{i\varepsilon}-\mu_{m\varepsilon}=arepsilon^{m+1}\,\hat{c}_{m+1},\,\,|\,\delta_{m+1}\,|\leqslant rac{||\overline{g}_m||}{||\,w_{\varepsilon}\,||}$$
 ,

и мы приходим к формуле (9.16). Пусть $3d = \min (\lambda_{i0} - \lambda_{i-1,0}, \lambda_{i+1,0} - \lambda_{i0})$. При достаточно малом ϵ

$$\lambda_{i\varepsilon} - \lambda_{i0} \leqslant d$$
, $\lambda_{i-1,\varepsilon} - \lambda_{i-1,0} \leqslant d$, $\lambda_{i+1,\varepsilon} - \lambda_{i+1,0} \leqslant d$.

Таким образом, на отрезке $[\lambda_{i0}-d, \lambda_{i0}+d]$ заключено единственное собственное значение $\lambda_{i\varepsilon}$ оператора L_{ε} , которому отвечает единственная нормированная функция $w_{i\varepsilon}$.

Таким образом, T_d^0 (см. стр. 109), отвечающее оператору L_{ϵ} и интервалу $[\lambda_{i0}-\delta,\lambda_{i0}+\delta]$, состоит из функций вида $tw_{i\epsilon}, -\infty < t < +\infty$. Фигурирующая в лемме 13 нормированная функция u_0 равна $\pm w_{i\epsilon}$. Можно именно ее обозначить через $u_{i\epsilon}$.

В силу (9.21) и леммы 13

$$\left\|u_{i\epsilon} - \frac{w_{\epsilon}}{\|w_{\epsilon}\|}\right\| \leqslant O\left(\epsilon^{m_{\epsilon} 1}\right).$$

Отсюда, если положить $\overline{u_{i\epsilon}} = \| w_{\epsilon} \| u_{i\epsilon}$, имеем, обозначая $\overline{u_{i\epsilon}} - w_{\epsilon} = \epsilon^{m+1} z_m = z_{\epsilon}$, $\| z_m \| = O(1)$. С другой стороны, в силу (9.7), (9.16) и (9.21)

$$\|(L_{\varepsilon} - \lambda_{i\varepsilon} I) z_{\varepsilon}\| = O(\varepsilon^{m+1}) \tag{9.22}$$

и, значит,

$$||L_{\varepsilon}z_{\varepsilon}|| \leq ||(L_{\varepsilon} - \lambda_{i\varepsilon}I)z_{\varepsilon}|| + |\lambda_{i\varepsilon}|||z_{\varepsilon}|| = O(\varepsilon^{m+1}).$$

$$(9.23)$$

Пользуясь тем, что z_{ϵ} удовлетворяют граничным условиям (6.2'), (6.4'), отсюда выводим, что для z_{ϵ} имеют место оценки (7.12), (7.13), (7.14). Приходим к следующей теореме.

Теорема 13. Пусть даны самосопряженные эллиптические операто-

ры
$$L_{2k_1}$$
 порядка $2k_1$ и $L_{\varepsilon} = L_{2k_1} + \varepsilon^2 L_{\varepsilon_1}$, $L_{\varepsilon_1} = \sum_{j=1}^{l_1} \varepsilon^{2(j-1)} L_{2(k_1+j)}$ порядка

 $2(k_1+l_1)$, причем оператор L_{2k_1} при граничных условиях (6.2')—положительно определенный и оператор $L_{1\epsilon}$ при граничных условиях (6.2'), (6.4')—положительный (в смысле (9.8)).

Для і-го собственного значения $\lambda_{i\epsilon}$ оператора L_{ϵ} и для соответствующей і-й собственной функции $\overline{u}_{i\epsilon}$ этого оператора имеют место следующие асимптотические представления:

$$\lambda_{i\epsilon} = \sum_{j=0}^{m} \epsilon^{j} \mu_{j} + \epsilon^{m+1} \delta_{m+1}, \ \mu_{0} = \lambda_{i0}, \ \delta_{m+1} = O(1), \tag{9.24}$$

$$\bar{u}_{is} = \sum_{j=0}^{m} \varepsilon^{j} w_{j} + \sum_{r=0}^{m+k_{1}} \varepsilon^{r+1} \alpha_{r} + \sum_{s=0}^{m+k_{1}} \varepsilon^{s} v_{s} + \varepsilon^{m+1} y_{m}, \tag{9.25}$$

еде $\mu_0=\lambda_{i0}$ — i-е собственное значение оператора L_{2k_1} , которое предполагается простым; $w_0=u_{i0}$ — соответствующая i-я собственная функция этого оператора; w_j и μ_j при $j\geqslant 1$ определяются из уравнений вида (9.19) при граничных условиях (6.2'); v_s — функции типа погранслоя k-го порядка, по-

гашающие невязки в выполнении граничных условий (6.4') функциями w_s , — определяются из обыкновенных уравнений (9.19'); $\epsilon \alpha_r$ служат для погашения невязок в выполнении функциями v_r граничных условий (6.2'). Для остаточного члена $z_m = \epsilon^{m+1} y_m$ справедливы оценки (7.12) — (7.14):

$$\sum_{|i|=1}^{2k_1} \|D^{(i)} z_m\| + \|z_m\| = O(\varepsilon^{m+1}), \quad \|D^{(2k_1+j)} z_m\| = O(\varepsilon^{m+1-j}) + (0 \le j \le p).$$

Замечание 1. Случай кратного собственного значения рассматривается аналогично тому, как это сделано в [37].

Замечание 2. Если мы хотим написать аналогичное представление для нормированной собственной функции $u_{i\epsilon} = \frac{1}{||w_{\epsilon}||} \overline{u_{i\epsilon}}$, то мы должны найти асимптотическое представление $\frac{1}{||w_{\epsilon}||}$. Так как $||w_{\epsilon}|| = 1 + O(\epsilon)$, $\frac{1}{||w_{\epsilon}||} = 1 + O(\epsilon)$, то имеет место представление вида

$$\frac{1}{\|w_{\varepsilon}\|^{2}} = 1 + \sum_{i=1}^{m} b_{i} \varepsilon^{i} + \varepsilon^{m+1} \delta_{m}. \tag{9.26}$$

Записав W в виде

$$w_{\varepsilon} = u_{i0} + \sum_{s=1}^{m} \varepsilon^{s} (w_{s} + \alpha_{s-1}) + \sum_{s=0}^{m-h_{1}} \varepsilon^{h_{1}+s} \overline{v_{s}} + \varepsilon^{m+1} x_{m},$$

$$||x_{m}|| = O(1),$$

мы из тождества

$$\frac{1}{||w_{\epsilon}||^2}(w_{\epsilon}, w_{\epsilon}) = 1$$

получим:

$$\begin{split} & \Big(1 + \sum_{j=1}^{m} b_{j} \varepsilon^{j} + b_{m} \varepsilon^{m+1} \,\Big) \Big(\, u_{i0} + \sum_{s=1}^{m} \varepsilon^{s} \, (w_{s} + a_{s-1}) \, + \\ & + \sum_{s=0}^{m-k_{1}} \varepsilon^{k_{1} + s} \overline{v_{s}} + \varepsilon^{m+1} \, x_{m}, \, \, u_{i0} + \sum_{s=1}^{m} \varepsilon^{s} \, (w_{s} + a_{s-1}) \, + \sum_{s=0}^{m-k_{1}} \varepsilon^{k_{1} + s} \overline{v_{s}} + \varepsilon^{m+1} \, x_{m} \,\Big) = 1. \end{split}$$

Приравнивая нулю коэффициенты при ε^s ($1 \leqslant s \leqslant m$), получаем уравнения (мы считаем $b_0=1$, $w_0=u_{i0}$, $(w_0, w_0)=1$):

$$b_{s} = -\sum_{j=0}^{s-1} b_{j} \sum_{r=0}^{s-j} (w_{r} + \alpha_{r-1} + \overline{v}_{r-k_{1}}, \ w_{s-j-r} + \alpha_{s-j-r-1} + \overline{v}_{s-j-s-k_{1}})$$

$$(\alpha_{-1} = 0, \ v_{-p} = 0, \ p = 1, 2, \ldots).$$

Все числа b_s , таким образом, последовательно находимые, ограничены (относительно ϵ). И, наконец, беря коэффициент при ϵ^{m+1} , получим

$$\delta_m = O(1).$$

Зная разложение (9.26) для $\frac{1}{\|w_{\varepsilon}\|^2}$, уже легко найти аналогичное разложение для $\frac{1}{\|w_{\varepsilon}\|}$, пользуясь которым находим асимптотику для нормированной собственной функции $u_{i\varepsilon} = \frac{1}{\|w_{\varepsilon}\|} \overline{u}_{i\varepsilon}$.

§ 10. Асимптотика решений параболических уравнений с вырождающейся эллиптической частью

Решение смешанной задачи для параболического уравнения стремится при $t \to \infty$ к решению соответствующей краевой задачи для эллиптического уравнения ([26], [27]). В заметках авторов [40], [41] исследовался случай, когда эллиптическая часть параболического оператора вырождается при $t \to +\infty$ в оператор первого порядка. Именно наряду с решением $Z_t(x) = Z(t, x), \ x = (x_1, \ldots, x_n)$, параболического уравнения

$$\frac{\partial Z}{\partial t} + L_{\epsilon}Z = h, \quad Z|_{\Gamma} = 0, \quad \epsilon = \epsilon(t), \quad \epsilon(t) \to 0 \text{ при } t \to \infty,$$
 (10.1)

в цилиндрической области $Q imes (0 < t < +\infty)$ при произвольных начальных условиях из \mathcal{L}_2 рассматривалось семейство решений $u_{\epsilon(t)}(x)$ эллиптических уравнений

$$L_{\varepsilon}u_{\varepsilon}=h, \quad u_{\varepsilon}|_{\Gamma}=0, \quad \varepsilon=\varepsilon(t)$$
 (10.2)

и приводились достаточные условия для того, чтобы в той или иной метрике $Z_t(x) - u_{\varepsilon(t)}(x)$ стремилось к нулю при $\varepsilon \to 0$. Поскольку в этих заметках проведены доказательства, мы не будем повторять их содержания.

Сохраним обозначения §§ 4 и 5: $L_{\varepsilon} \equiv L_1 + \varepsilon L_2$, $L_1 u \equiv \frac{\partial u}{\partial x_1} - f u$, f = f(x) > 0 на \overline{Q} , L_2 —эллиптический оператор 2-го порядка. Из результатов заметки [41] и §§ 4—5 следует:

Теорема 14. а) Eсли $\varepsilon(t) = O(t^{-r})$, $\varepsilon'(t) = O(t^{-r-1})$, где 0 < r < 2, то $\|Z_t(x) - w_0(x)\| \to 0$ при $t \to +\infty$, где w_0 — решение вырожденного уравнения 1-го порядка

$$L_1 w_0 - h, \quad w_0|_{\Gamma^+} = 0.$$
 (10.3)

б) Если $\varepsilon(t) = O(t^{-r}), \ \varepsilon'(t) = O(t^{-r-1}), \ \epsilon \partial e$ при $n=1, \ 0 < r < 1,$ а при $n=2, \ 3, \ 0 < r < \frac{1}{2}$, то имеет место представление

$$Z_t = \omega_0 + v_z + P_{0,t}, \quad z = z(t), \tag{10.4}$$

еде w_0 — решение вырожденной задачи (10.3), $v_{\varepsilon}=(v_0+\varepsilon v_1)\,\psi\left(\frac{\rho}{\delta}\right)$ (см. теорему 7)— функция типа погранслоя в окрестности Γ -, $P_{0t}(x)$ при $t\to\infty$ равномерно стремится к нулю (теорема справедлива в пространстве числа измерений $n\leqslant 3$).

В условиях и. а) теоремы, в силу теоремы 1 из [41], $\|Z_t - u_{\varepsilon(t)}\| \to 0$ при $t \to \infty$. Далее, из теоремы 8 § 4 следует: $\|u_{\varepsilon} - w_0 - v_{\varepsilon}\| \to 0$ при $\varepsilon \to 0$, где $v_{\varepsilon} = v_0 \psi\left(\frac{\rho}{\delta}\right)$. Отсюда $\|Z_t - w_0\| = \|Z_t - u_{\varepsilon(t)} + (u_{\varepsilon(t)} - w_0 - v_{\varepsilon}) + v_{\varepsilon}\| \to 0$, так как $\|v_{\varepsilon}\| = O\left(\sqrt{\varepsilon}\right)$.

В условиях б) теоремы, в силу теоремы 2 из [41], $w_t - u_{\epsilon(t)}$ равномерно на \overline{Q} стремится к нулю при $t \to \infty$. Далее, в этих условиях из теоремы 5 § 4 следует: $u_{\epsilon} - w_0 - v_{\epsilon}$ (где $v_{\epsilon} = (v_0 + \epsilon v_1) \psi\left(\frac{\rho}{\delta}\right)$) равномерно на \overline{Q} стремится к нулю при $\epsilon \to 0$ (при $\epsilon = \epsilon(t)$, когда $t \to \infty$). Значит,

 $P_{0t}=Z_t-w_0-v_{\varepsilon}=Z_t-u_{\varepsilon}+(u_{\varepsilon}-w_0-v_{\varepsilon}),$ где $\varepsilon=\varepsilon(t),$ равномерно на \overline{Q} стремится к 0 при $t\to\infty$.

Докажем сейчас аналог первой части теоремы 6. Пусть \mathfrak{D} — множество точек, где характеристики оператора L_1 касаются Γ (при n=2 \mathfrak{D} состоит из двух точек A и B), $U(\mathfrak{D})$ — произвольная окрестность \mathfrak{D} . Для простоты ограничимся случаем, когда h(x)=0 на $U(\mathfrak{D})$. Тогда при достаточной глад-кости h решение w_0 задачи (10.3) будет гладко во всей области \overline{Q} .

вая часть h и граница Γ 2(m+1) раз дифференцируемы, причем h = 0 вблизи \mathfrak{D} , то в Q имеет место представление

 $Z(x,t)=(w_0+\varepsilon w_1+\ldots+\varepsilon^m w_m)+(v_0+\varepsilon v_1+\ldots+\varepsilon^{m+1}v_{m+1})+P_{m,t}.$ (10.5) Здесь w_0- решение вырожденной задачи (10.3), w_i- последовательно полученные решения задач вида (4.33) (4.34); $v_0, v_1, \ldots-$ функции типа погранслоя в окрестности Γ^- , последовательно получаемые решением обыкновенных уравнений вида (4.32), (4.35) с постоянными коэффициентами Γ^-); $\|P_{m,t}\|=O\left(\varepsilon^{m+1}\right)$. Заметим прежде всего, что

$$\left\| \frac{\partial v_0}{\partial t} \right\| = O\left(|\varepsilon'| \varepsilon^{-\frac{1}{2}} \right), \dots, \left\| \frac{\partial}{\partial t} (\varepsilon^j v_j) \right\| = O\left(|\varepsilon'| \varepsilon^{j-\frac{1}{2}} \right). \tag{10.6}$$

B самом деле, если $P_k(t)$ — многочлен k-й степени, то йри $\lambda>0$ $\Big\{ \int\limits_0^\infty \left[P_k\left(\widetilde{t}\right)e^{-\lambda \tau} \right]^2 d\tau \Big\}^{\frac{1}{2}} = c\left(k,\,\lambda\right) < \infty.$ Отсюда

$$\left\{ \int_{0}^{\infty} \left[P_{h} \left(\frac{\rho}{\varepsilon} \right) e^{-\lambda \frac{\rho}{\varepsilon}} \right]^{2} d\rho \right\}^{\frac{1}{2}} = c(h, \lambda) \varepsilon^{\frac{1}{2}} = O\left(\varepsilon^{\frac{1}{2}} \right). \tag{10.7}$$

Далее:

$$\frac{\partial}{\partial t} \left[\varepsilon^{j}(t) P_{k} \left(\frac{\rho}{\varepsilon} \right) e^{-\lambda \frac{\rho}{\varepsilon}} \right] = \varepsilon'(t) \varepsilon^{j-1} \left[j P_{k} \left(\frac{\rho}{\varepsilon} \right) - \frac{\rho}{\varepsilon} P'_{k} \left(\frac{\rho}{\varepsilon} \right) + \frac{\lambda \rho}{\varepsilon} P_{k} \left(\frac{\rho}{\varepsilon} \right) \right] e^{-\frac{\lambda \rho}{\varepsilon}} = \varepsilon' \varepsilon^{j-1} P_{k+1} \left(\frac{\rho}{\varepsilon} \right) e^{-\frac{\lambda \rho}{\varepsilon}}.$$
(10.8)

Здесь $P_{k+1}(\tau) = jP_k(\tau) - \tau P_k'(\tau) + \lambda \tau P_k(\tau)$. Из (10.7) и (10.8) следует:

$$\left\{ \int_{0}^{\infty} \frac{\partial}{\partial t} \left[\varepsilon(t)^{j} P_{k} \left(\frac{\rho}{\varepsilon(t)} \right) \exp\left(-\frac{\lambda \rho}{\varepsilon(t)} \right) \right]^{2} d\rho \right\}^{\frac{1}{2}} = O\left(\left| \varepsilon' \right| \varepsilon^{\frac{j-\frac{1}{2}}{2}} \right). \quad (10.9)$$

Вспомнив структуру функций v_i , мы из (10.9) получим (10.6).

¹⁾ Выражения для v_i — такие же, как в § 4, только сейчас всюду вместо є следует подставить є (t). В силу наших предположений относительно h функции v_i и w_i равны нулю вблизи \mathfrak{D} .

Но тогда

$$\left\| \frac{\partial}{\partial t} \left(\sum_{s=0}^{m+1} \mathbf{z}^s v_s \right) \right\| = O\left(|\mathbf{z}'| \mathbf{z}^{-\frac{1}{2}} \right). \tag{10.10}$$

Далее,

$$\left\| \frac{\partial}{\partial t} \left(\sum_{s=0}^{m} \varepsilon^{s} w_{s} \right) \right\| = O(|\varepsilon'|). \tag{10.11}$$

Обозначим:

$$\widetilde{u}_m = \sum_{s=0}^m \varepsilon^s w_s + \sum_{i=0}^{m+1} \varepsilon^i v_i.$$

Тогда имеем:

$$\left\| \frac{\partial \widetilde{u}_m}{\partial t} \right\| = O\left(\left| \varepsilon' \right| \varepsilon^{-\frac{1}{2}} \right). \tag{10.12}$$

С другой стороны, в силу теоремы 4 § 4,

$$L_{\varepsilon}\widetilde{u}_{m} = h + g_{m, t} \varepsilon^{m+1}, \quad ||g_{m, t}|| = O(1).$$
 (10.13)

Если $0 < r < \frac{1}{m + \frac{4}{2}}$, то в силу условий теоремы

$$|s'|s^{-\frac{1}{2}} = O(t^{-r-1+\frac{r}{2}}) = O(t^{-\frac{r}{2}-1}) = O[(s^{-\frac{1}{r}})^{-\frac{r}{2}-1}] = O(s^{m+1}).$$
 (10.14)

Тогда из (10.12), (10.13) и (10.14) следует:

$$\frac{\partial \widetilde{u}_m}{\partial t} + L_{\varepsilon}\widetilde{u}_m = h + \widetilde{g}_{m, t}, \quad \|\widetilde{g}_{m, t}\| = O\left(\varepsilon^{m+1}\right) = O\left(t^{-\gamma}\right), \quad \gamma = r\left(m+1\right). \quad (10.15)$$

Почленным вычитанием (10.15) из (10.1) получаем, обозначая

$$P_{m, t} = Z_t - \widetilde{u}_m = Z_t - \sum_{s=0}^m \varepsilon^s w_s - \sum_{j=0}^{m+1} \varepsilon^j v_j,$$
 (10.16)

$$\frac{\partial P_{m, t}}{\partial t} + L_z P_{m, t} = -\widetilde{g}_m. \tag{10.16'}$$

Отсюда следует:

$$||P_{m,t}|| = O(e^{m+1}) = O(t^{-\gamma}), \quad \gamma = r(m+1).$$
 (10.17)

В самом деле, умножим скалярно обе части (10.16') на $P_{m,t}$ и обозначим: $\|P_{m,t}\| = \alpha(t)$. Тогда:

$$\left(\frac{\partial P_{m, t}}{\partial t}, P_{m, t}\right) = \frac{1}{2} \|P_{m, t}\|^{2} = \frac{1}{2} \frac{d\alpha^{2}(t)}{dt} = \frac{1}{2} \alpha'(t) \alpha(t);$$

$$\left(L_{\xi} P_{m, t}, P_{m, t}\right) \geqslant \|P_{m, t}\|^{2} \cdot C = \alpha^{2}(t) C;$$

$$\left\|\widetilde{g}_{m, t}, P_{m, t}\right\| \leqslant \|g_{m, t}\| \cdot \|P_{m, t}\| = O(t^{-\gamma}) \alpha(t),$$

и, следовательно,

$$\alpha'(t) + C\alpha(t) \leq C_1 t^{-\gamma}$$

Поэтому

$$0 \leqslant \alpha(t) \leqslant \alpha(t_0) e^{-C(t-t_0)} + C_1 \int_{t_0}^t \tau^{-\gamma} e^{-C(t-\tau)} d\tau \leqslant$$

$$\leqslant \alpha(t_0) e^{-C(t-t_0)} + Ce^{-\frac{t}{2}} \int_{t_0}^{\frac{t}{2}} \tau^{-\gamma} d\tau + C_1 \left(\frac{t}{2}\right)^{-\gamma} \int_{\frac{t}{2}}^t e^{-C(t-\tau)} d\tau = O(t^{-\gamma}).$$

Итак,

$$||P_{m,t}|| = O(t^{-\gamma}) = O(t^{-r(m+1)}) = O(\varepsilon^{m+1}).$$

Отсюда и из (10.16) следует наша теорема. Можно получить также оценки производных невязки $P_{m,t}$, соответствующие оценкам теоремы 4 § 4.

Аналогичные асимптотики получаются для случая, когда L_{ϵ} —эллиптический оператор более высокого порядка, регулярно вырождающийся в оператор более низкого порядка в условиях теорем §§ 7 и 8.

Некоторые вопросы и задачи

Сформулируем в заключение некоторые задачи и вопросы, естественно возникающие из предыдущего и пока не решенные.

- 1. В настоящей статье введено и систематически использовано понятие регулярного вырождения для случая, когда погранслой строится с помощью обыкновенного дифференциального уравнения. В случае, когда часть границы является характеристическим многообразием одного из дифференциальных операторов L_{ϵ} или L_h , как] мы видели в §§ 4, 6, 8, для построения погранслоя приходится употреблять некоторые уравнения в частных производных (в частности, получается параболический погранслой). Возникает вопрос о распространении понятия регулярного вырождения и на этот случай. Нам кажется, что с помощью трансформации Фурье по «граничным» координатам φ_i можно свести этот случай к изучению обыкновенного уравнения по трансверсальному направлению ρ и расположения корней его характеристического уравнения (см. п. 4 § 6).
- 2. Желательно провести исследование асимптотики решений u_{ϵ} вблизи точек касания с границей Γ характеристик операторов L_{ϵ} и L_h . В § 4 мы встретились с точками A и B касания. Нам представляется, что этот случай является в известном смысле предельным для случая, рассмотренного в п. 5 § 4, где часть границы совпадает с характеристикой y=c. Было бы интересно построить и в предельном случае точек касания A и B в их окрестностях «параболический» погранслой. Такие погранслои могли бы дать более точную асимптотику в этом случае. Такой же вопрос возникает и для уравнений высших порядков с вещественными характеристиками.
- 3. С вопросом 2 связан более общий вопрос о склеивании погранслоев, которые на разных частях границы определяются по-разному (и, в частности, на некоторых частях границы превращаются в тождественный нуль) (см. п. 3 § 6).
- 4. Естественно возникает вопрос о полном исследовании вопросов существования и дифференциальных свойств решений хотя бы первых

краевых задач для однохарактеристических уравнений, которые позволили бы придать предложениям § 8 такую же формулировку, как предложениям § 7.

5. Следовало бы исследовать, когда из условий 1) разрешимости предельной задачи A_0 , 2) регулярности вырождения (в алгебраическом смысле) задачи A_s в A_0 вытекает условие 3) — равномерная разрешимость задач A_s . [В настоящей статье, мы обычно приводили в качестве достаточных условий для одновременного выполнения условий 1), 2) и 3) позитивность оператора вырожденной задачи (при $\varepsilon = 0$) и положительность вещественной части алгебраической формы вида (7.4).]

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- [1] K. Friedrichs, Asymptotic phenomena in mathematical physics, Bull. Amer. Math. Soc. 61, 6 (1955), 485—504 (перевод см.: Матем. 1:2 (1957), 79—94).
- [2] G. D. Birkhoff, On the asymptotic character in the solutions of certain linear differential equations containing a parameter, Trans. Amer. Math. Soc. 9 (1908), 219— 231.
- [3] P. Noaillon, Developpements asymptotiques dans les equations différentialles lineaires a parametre variable, Memoires de la Soc. des Sci. de Liege 3, 11 (1912), 197.
- [4] W. J. Trjitzinsky, Theory of linear differential equations containing a parameter, Acta Math. 67 (1936), 1-50.
- [5] H. L. Turritin, Asymptotic expansions of solutions of systems of ordinary lineary differential equations containing a parameter, Contributions to the theory of non-lineary oscillations, v. II, Princeton, 1952 (перевод см.: Матем. 1:2 (1957), 29—59).
- [6] А. Б. Васильева, О дифференциальных уравнениях, содержащих малые параметры, Матем. сб. 31 (73):3 (1952), 586—649.
- [7] И. С. Градштейн, Линейные уравнения с переменными коэффициентами и малыми параметрами при старших производных, Матем. сб. 27 (69) (1950), 47—68.
- [8] А. Н. Тихонов, Системы дифференциальных уравнений, содержащие малые параметры при производных, Матем. сб. 31 (73): 3 (1952), 575—586.
- [9] В. П. Маслов, Теория возмущений операторных уравнений и проблема малого параметра в дифференциальных уравнениях, ДАН 111, № 3 (1956), 531—534.
- [10] М. А. Леонтович и В. А. Фок, Решение задачи о распространении электромагнитных волн вдоль поверхности земли по методу параболического уравнения, Исследования по распространению радиоволн, Сб. 2, Изд. АН, 1948, стр. 13—39.
- [11] В. А. Фок, Поле плоской волны вблизи поверхности проводящего тела, Изв. АН, сер. физ. 10, № 2 (1946), 171—186.
- [12] А. А. Гольденвейзер, Тонкие упругие оболочки, М., Гостехиздат, 1953.
- [13] W. Wasow, Asymptotic solution of boundary value problems for the differential equation $\Delta u + \lambda \frac{\partial}{\partial x} u = \lambda f(x, y)$, Duke Journ. 11 (1944), 405—415.
- [14] N. Levinson, The first boundary value problem for $\epsilon \Delta u + A(x, y) u_x + B(x, y) u_y + C(x, y) u = D(x, y)$ for small ϵ , Ann. of Math. 51, 2 (1950), 428.
- [15] С. Л. Каменомостская, Первая краевая задача для уравнений эллиптического типа с малым параметром при старших производных, Изв. АН 19, 3 (1956), 605
- [16] О. А. Олейник, Овторой краевой задаче для уравнений эллиптического типа с малым параметром при старших произволных, ДАН 79, № 5 (1951), 735.
- [17] О. А. Олейник, Обуравнениях эллиптического типа с малым параметром при старших производных, Матем. сб. 31, № 1 (1952), 104—117.
- [18] О. А. Олейник, Окраевых задачах для уравнений с малым параметром при старших производных, ДАН 85, № 3 (1952), 493.

- [19] R. B. D a v i s, Asymptotic solutions of the first boundary value problem for a four-order elliptic partial differential equation, Journ. Rat. Mech. a. An. 5, N. 3 (1956), 605—620.
- [20] И. С. Градштейн, Задача Коши и асимптотические ряды для решения систем дифференциальных уравнений с малыми множителями при производных, Труды Третьего Всесоюзного матем. съезда 1 (1956), 50—51.
- [21] Б. Н. Понайоти, Озадаче Коши для линейных дифференциальных уравнений с частными производными, содержащих малый параметр, Труды Ин-та физ. и матем. АН АзССР, сер. матем. 7 (1955), 110—128.
- [22] С. Л. Соболев, Некоторые применения функционального анализа в математической физике, Л., 1950.
- [23] F. E. Browder, The Dirichlet problem for linear elliptic equations, of arbitrary even order with variable coefficients, Proc. Nat. Acad. sci., USA 38 (1952), 230—235.
- [24] F. E. Browder, Strongly elliptic systems of differential equations, Contributions to the Theory of Partial Differential Equations, Ann. of Math. Studies 33 (1954).
- [25] М. И. В и ш и к, Метод ортогональных и прямых разложений в теории эллиптических дифференциальных уравнений, Матем. сб. 25 (1949), 189—234.
- [26] М. И. В и ш и к, О сильно эллиптических системах дифференциальных уравнений. Матем. сб. 29 (1951), 615—676.
- [27] М. И. В и ш и к, Задача Коши для уравнений с операторными коэффициентами, смешанная краевая задача для систем дифференциальных уравнений и приближентный метод их решения, Матем. сб. 39 (81): 1 (1956), 50—148.
- [28] L. Gårding, Le problème de Dirichlet pour les équations aux derivées partielles elliptiques linéaires dans les domaines bornées, Compt. Rend. Acad. Sci (Paris) 233 (1951), 1554—1556.
- [29] L. Gårding, Dirichlet's probleme for linear elliptic partial differential equations, Math. Scandinavica 1 (1953), 55-72.
- [30] K. Friedrichs, On the Differentiability of the Solutions of Linear Elliptic Differential Equations, Comm Pure. Appl. Math. 6, 3 (1953), 299—326.
- [31] С. Н. Бернштейн, Исследование и интегрирование дифференциальных уравнений с частными производными второго порядка эллиптического типа, Сообщения Харьк. Матем. об-ва (1908), 1—163 (см. стр. 82—84; 116—118).
- [32] S. Bernstein, Sur la generalisation du probleme de Dirichlet, Math. Ann. 69 (1910) (см. стр. 94—98).
- [33] О. А. Ладыженская, Смешанная задача для гиперболического уравнения, М., Гостехиздат, 1953.
- [34] О. А. Ладыженская, Простое доказательство разрешимости краевых задачи о собственных значениях для липейных эллиптических уравнений, Вестник ЛГУ, № 11 (1955), 23—29.
- [35] В. Б. Гласко, Некоторые задачи о собственных значениях, содержащие малый параметр, ДАН 108, № 5 (1956), 767—769.
- [36] В. Н. Гольдберг, О возмущении линейных операторов с чисто дискретным спектром, ДАН 115, № 4 (1957).
- [37] Л. А. Люстерник, О разностных апроксимациях оператора Лапласа, УМН IX, вып. 2 (1954), 3—66 (стр. 62, лемма 41).
- [38] В. П. Маслов, Теория возмущений при переходе от дискретного спектра к непрерывному, ДАН 109, № 2 (1956), 267—270.
- [39] В. П. Маслов, Метод теории возмущений для отыскания спектра обыкновенных дифференциальных операторов с малым параметром при старшей производной, ДАН 111, № 5 (1956), 977—980.
- [40] М. И. В и ш и к и Л. А. Л ю с т е р н и к, Стабилизация решений некоторых дифференциальных уравнений в гильбертовом пространстве, ДАН 111, № 1 (1956), 12—15
- [41] М. И. Вишик и Л. А. Люстерник, Стабилизация решений параболических уравнений, ДАН 111, № 2 (1956), 273—275.

- [42] М. И. В и ш и к и Л. А. Л ю с т е р и и к, Об эллиптических уравнениях, содержащих малые параметры при производных, ДАН 113, № 4 (1957).
- [43] М. И. В и ш и к и Л. А. Л ю с т е р н и к, О некоторых эллиптических уравнениях четного порядка, содержащих малые параметры при старших производных, вырождающихся в уравнения первого (и вобоще нечетного) порядка, ДАН 113, № 5 (1957).
- [44] О. В. Гусева, О краевых задачах для сильно эллиптических систем, ДАН 102, № 6 (1955), 1069—1072.
- [45] L. Nirenberg, Remarks on Strongly Elliptic Partial Differential Equations, Comm. Pure Appl. Math. 8 (1955), 648—674.
- [46] А. И. К о ш е л е в, Об ограниченности в L_p производных решений эллиптических дифференциальных уравнений, Матем. сб. 38 (80): 3 (1956), 359—372.
- [47] А. И. Кошелев, Обограниченности в L_p производных решений эллиптических уравнений и систем, ДАН 110, N 3 (1956), 323—325.
- [48] L. Nirenberg, Estimates and existence of solutions of elliptic equations, Comm. of Pure and Appl. Math. 9 (1956), 509-530.
- [49] М. И. Вишик и О. А. Ладыженская, Краевые задачи для уравнений в частных производных и некоторых классов операторных уравнений, УМН XI, вып. 6 (1956), 41—97.
- [50] P. D. Lax, On Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm, Pure Appl. Math. 8 (1955), 615—633.
- [51] Ф. Р. Гантмахер, Теория матриц, М., Гостехиздат, 1953.
- [52] Carrier, Boundary layer problems in applied mechanics Advances in Appl. Mech 3 (1953), 1—19.
- [53] О. А. Ладыженская, Об уравнениях с малым параметром при старших про изводных в линейных дифференциальных уравнениях с частными производными, Вестник ЛГУ, № 7, вып. 2 (1957), 104—120.